2024年大数据最全深度学习(二)—— TensorFlow入门(1),2024年最新膜拜大佬

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

我们也可以获取它的形状,类型及转换为ndarray:

print("Shape: ",my_variable.shape)
print("DType: ",my_variable.dtype)
print("As NumPy: ", my_variable.numpy)

改变其数值(需注意形状必须保持一致):

my_variable.assign([[3,4],[5,6]])

2.3 转换成 numpy

我们可将张量转换为 numpy 中的 ndarray 的形式,转换方法有两种,以张量 tensor2 为例:

  • np.array
np.array(tensor2)
# array([2., 3., 4.], dtype=float32)

  • Tensor.numpy()
tensor2.numpy()
# array([2., 3., 4.], dtype=float32)

2.4 常用函数

我们可以对张量做一些基本的数学运算,包括加法、元素乘法和矩阵乘法等

# 定义张量a和b
a = tf.constant([[1, 2],
                 [3, 4]])
b = tf.constant([[1, 1],
                 [1, 1]]) 

  • tf.add(a,b) 计算张量的和
  • tf.multiply(a,b) 计算张量的元素乘法
  • tf.matmul(a,b) 计算矩阵乘法
c = tf.constant([[4.0, 5.0], [10.0, 1.0]])

  • tf.reduce_sum(c) 求和
  • tf.reduce_mean(c) 平均值
  • tf.reduce_max(c) 最大值
  • tf.reduce_min(c) 最小值
  • tf.argmax(c) 最大值的索引
  • tf.argmin(c) 最小值的索引

3 tf.keras介绍

tf.keras 是TensorFlow 2.0的高阶API接口,为 TensorFlow 的代码提供了新的风格和设计模式,大大提升了TF代码的简洁性和复用性,官方也推荐使用 tf.keras 来进行模型设计和开发。

3.1 常用模块

在这里插入图片描述

3.2 常用方法

深度学习实现的主要流程:

  1. 数据获取
  2. 数据处理
  3. 模型创建与训练
  4. 模型测试与评估
  5. 模型预测

(1)导入tf.keras

使用 tf.keras,首先需要在代码开始时导入tf.keras

import tensorflow as tf
from tensorflow import keras

(2)数据输入

对于小的数据集,可以直接使用 numpy 格式的数据进行训练、评估模型,对于大型数据集或者要进行跨设备训练时使用 tf.data.datasets 来进行数据输入。

(3)模型构建

  • 简单模型使用 Sequential 进行构建
  • 复杂模型使用函数式编程来构建
  • 自定义layers

(4)训练与评估

  • 配置训练过程
# 配置优化方法,损失函数和评价指标
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
              loss='categorical\_crossentropy',
              metrics=['accuracy'])

  • 模型训练
# 指明训练数据集,训练epoch,批次大小和验证集数据
model.fit/fit_generator(dataset, epochs=10, 
                        batch_size=3,
          validation_data=val_dataset,
          )

  • 模型评估
# 指明评估数据集和批次大小
model.evaluate(x, y, batch_size=32)

  • 模型预测
# 对新的样本进行预测
model.predict(x, batch_size=32)

(5)回调函数(callbacks)

回调函数用在模型训练过程中,来控制模型训练行为,可以自定义回调函数,也可使用tf.keras.callbacks 内置的 callback

  • ModelCheckpoint:定期保存 checkpoints。
  • LearningRateScheduler:动态改变学习速率。
  • EarlyStopping:当验证集上的性能不再提高时,终止训练。
  • TensorBoard:使用 TensorBoard 监测模型的状态。

(6)模型的保存和恢复

  • 只保存参数
# 只保存模型的权重
model.save_weights('./my\_model')
# 加载模型的权重
model.load_weights('my\_model')

  • 保存整个模型
# 保存模型架构与权重在h5文件中
model.save('my\_model.h5')
# 加载模型:包括架构和对应的权重
model = keras.models.load_model('my\_model.h5')

3.3 模型入门案例

  1. 模块导入
# # 导入其他相关的库
# 绘图,获取数据集
import seaborn as sns
# 数值计算
import numpy as np

# 机器学习
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
# 逻辑回归
from sklearn.linear_model import LogisticRegressionCV

# 深度学习
# 用于模型搭建
from tensorflow.keras.models import Sequential
# 构建模型的层和激活方法
from tensorflow.keras.layers import Dense, Activation
# 数据处理的辅助工具
from tensorflow.keras import utils

注意:LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证,以及选择正则化系数C以外, LogisticRegression和LogisticRegressionCV的使用方法基本相同。

  1. 数据集处理

(1)获取数据集

iris = sns.load_dataset("iris")
# print(type(iris)) pandas.core.frame.DataFrame
iris.head()

在这里插入图片描述

注:

  • 我们常用 sklearn.datasets 的 load_*() 获取数据集,返回 Bunch 对象
  • seaborn 库内置了十几个数据集,也可以获取数据集,返回数据集的类型为 DataFrame

以下为拓展,本例中仍使用 seaborn 获取的数据集

from sklearn.datasets import load_iris
import pandas as pd

iris = load_iris()
type(iris) # sklearn.utils.\_bunch.Bunch
# print(dir(iris)) # 查看data所具有的属性或方法
# print(iris.DESCR) # 查看数据集的简介
iris = pd.DataFrame(data=iris.data,columns=iris.feature_names)
iris.head()

在这里插入图片描述

可以注意到使用 sklearn 中的鸢尾花数据集没有标签值

(2)数据展示

另外,利用 seaborn 中 pairplot 函数探索数据特征间的关系:

# sns.pairplot()用来展示两两特征之间的关系
# hue 针对某一字段进行分类 ,不同类别的点会以不同的颜色显现出来
sns.pairplot(iris,hue="species") 

在这里插入图片描述
(3)数据集划分

# 确定特征值和目标值

# X = iris.iloc[:, :4]
# y = iris.iloc[:, 4]
# type(X),type(y) # (pandas.core.frame.DataFrame, pandas.core.series.Series)

X = iris.values[:, :4]
y = iris.values[:, 4]
# type(X),type(y) # (numpy.ndarray, numpy.ndarray)

# 数据集的划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5,random_state=0) # 返回numpy.ndarray类型数据

  1. sklearn 实现
# 实例化分类器
estimator = LogisticRegressionCV()
# 训练
estimator.fit(X_train, y_train)
# 计算准确率并进行打印
print("Accuracy = {0:.2f}".format(estimator.score(X_test, y_test)))  # 冒号左侧的0表示对应参数的索引,此处只有一个参数0可省略
# 0.93

注意:

  • LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证,以及选择正则化系数C以外, LogisticRegression和LogisticRegressionCV的使用方法基本相同。
  1. Keras 实现

在sklearn中我们只要实例化分类器并利用fit方法进行训练,最后衡量它的性能就可以了,那在tf.keras中与在sklearn非常相似,不同的是:

  • 构建分类器时需要进行模型搭建(分类器需要自己去构建
  • 数据采集时,sklearn可以接收字符串型的标签,如:“setosa”,但是在 tf.keras 中需要对标签值进行热编码,如下所示:
    在这里插入图片描述
    (1)对标签值热编码

有很多方法可以实现热编码,比如 pandas 中的 get_dummies() ,在这里我们使用 tf.keras 中的方法进行热编码:

def onehot\_encode\_object\_array(arr):
    # 去重获取全部的类别
    # return\_inverse为True时:会构建一个递增的唯一值的新列表,并返回旧列表arr中的值在新列表uniques中的索引列表ids
    uniques, ids = np.unique(arr, return_inverse=True) 
    # 返回热编码的结果
    return utils.to_categorical(ids, len(uniques))
    
# 训练集热编码
y_train_onehot = onehot_encode_object_array(y_train)
# 测试集热编码
y_test_onehot = onehot_encode_object_array(y_test)

注意:

  • np.unique 将数组中的元素进行去重操作,详见:https://blog.csdn.net/Hhjnv/article/details/122916912
  • to_categorical() 用于分类,将标签转为one-hot编码,详见:https://blog.csdn.net/nima1994/article/details/82468965

(2)模型搭建

在 sklearn中,模型都是现成的。
tf.Keras 是一个神经网络库,我们需要根据数据和标签值构建神经网络,神经网络可以发现特征与标签之间的复杂关系。

神经网络是一个高度结构化的图,其中包含一个或多个隐藏层,每个隐藏层都包含一个或多个神经元。

神经网络有多种类别,该程序使用的是 密集型神经网络,也称为 全连接神经网络:一个层中的神经元将从上一层中的每个神经元获取输入连接。例如,下图显示了一个密集型神经网络,其中包含 1 个输入层、2 个隐藏层以及 1 个输出层

在这里插入图片描述

上图 中的模型经过训练并馈送未标记的样本时,它会产生 3 个预测结果:相应鸢尾花属于指定品种的可能性。对于该示例,输出预测结果的总和是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。

与上一层完全连接的隐藏层称为 密集层。在图中,两个隐藏层都是密集的。

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。

与上一层完全连接的隐藏层称为 密集层。在图中,两个隐藏层都是密集的。

[外链图片转存中…(img-EjMKdNLj-1715605552137)]
[外链图片转存中…(img-sWY1fAnH-1715605552137)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 8
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值