PyTorch学习笔记(2)

a = torch.empty(5, 3)
print(a)

tensor([[2.4835e+27, 2.5428e+30, 1.0877e-19],
        [1.5163e+23, 2.2012e+12, 3.7899e+22],
        [5.2480e+05, 1.0175e+31, 9.7056e+24],
        [1.6283e+32, 3.7913e+22, 3.9653e+28],
        [1.0876e-19, 6.2027e+26, 2.3685e+21]])

  1. 创建一个有初始化的张量
b = torch.rand(5, 3) 
# torch.rand()返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数
# torch.randn()返回一个张量,包含了从标准正态分布(均值为0,差为1,即高斯白噪声)中抽取的一组随机数。
# torch.randint(参数1,参数2) 左闭右开
# random.randint(参数1,参数2) 左闭右闭


print(b)

tensor([[0.1368, 0.8070, 0.4567],
        [0.4369, 0.8278, 0.5552],
        [0.6848, 0.4473, 0.1031],
        [0.5308, 0.9194, 0.2761],
        [0.0484, 0.9941, 0.2227]])

对比有无初始化的矩阵:当声明一个未初始化的矩阵时,它本身不包含任何确切的值.。当创建一个未初始化的矩阵时,分配给矩阵的内存中有什么数值就赋值给了这个矩阵,本质上是毫无意义的数据。

  1. 创建一个全零张量并可指定数据元素的类型为long
c = torch.zeros(5, 3, dtype=torch.long)
print(c)

tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

同样地,还有 torch.ones()

  1. 直接通过数据创建张量
d = torch.tensor([2.5, 3.5])
print(d) # tensor([2.5000, 3.3000])

  1. 使用 numpy 中的数组创建 tensor
torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))

  1. 通过已有的一个张量创建指定尺寸的新张量
x = d.new_ones(5, 3, dtype=torch.double)
print(x)

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)

  1. 通过已有的一个张量创建相同尺寸的新张量
# 利用randn\_like方法得到相同张量尺寸的一个新张量, 并且采用随机初始化来对其赋值
y = torch.randn_like(x, dtype=torch.float)
print(y)

tensor([[-0.1497, -0.5832, -0.3805],
        [ 0.9001,  2.0637,  1.3299],
        [-0.8813, -0.6579, -0.9135],
        [-0.1374,  0.1000, -0.9343],
        [-1.1278, -0.9140, -1.5910]])

2.2 张量的属性

  1. 获取张量的大小
print(y.size()) # torch.Size([5, 3])

torch.Size 函数本质上返回的是一个tuple,因此它支持一切元组的操作。

  1. 改变张量的形状
i = torch.randn(4, 4)
# tensor.view()操作需要保证数据元素的总数量不变
j = i.view(16)
# -1代表自动匹配个数
k = i.view(-1, 8)
print(i.size(), j.size(), k.size())

torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

2.3 张量的运算

  1. 加法操作

第一种加法操作

print(x + y)

第二种加法操作

print(torch.add(x, y))

第三种加法操作

# 提前设定一个空的张量
result = torch.empty(5, 3)
# 将空的张量作为加法的结果存储张量
torch.add(x, y, out=result)
print(result)

第四种加法方式

# 原地置换
y.add_(x)
print(y)

注意:所有 in-place 的操作函数都有一个下划线的后缀,比如 x.copy_(y),x.add_(y),都会直接改变 x 的值

2.4 获取张量元素

  1. 取出元素

如果张量中只有一个元素,可以用 .item() 将值取出,作为一个 python number(真实值)

n = torch.randn(1)
print(n)
print(n.item())

tensor([-0.3531])
-0.3530771732330322

  1. 切片

用类似于Numpy 的方式对张量进行操作:

print(x[:, 1])

tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

2.5 类型转换

Torch Tensor和Numpy array的转换

a = torch.ones(5)
print(a) # tensor([1., 1., 1., 1., 1.])

  1. 将 Torch Tensor 转换为 Numpy array
b = a.numpy()
print(b) # [1. 1. 1. 1. 1.]

对其中一个进行加法操作,另一个也随之被改变

a.add_(1)
print(a)
# tensor([2., 2., 2., 2., 2.])
print(b)
# [2. 2. 2. 2. 2.]

  1. 将 Numpy array 转换为 Torch Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a) 
# [1. 1. 1. 1. 1.]
print(b)
# tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
np.add(a, 1, out=a)
print(a)
# [2. 2. 2. 2. 2.]
print(b)
# tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

注意:

  • 所有在CPU上的Tensors,除了CharTensor,都可以转换为Numpy array并可以反向转换
  • Torch Tensor 和 Numpy array共享底层的内存空间,因此改变其中一个的值,另一个也会随之被改变。

关于Cuda Tensor: Tensors可以用.to()方法来将其移动到任意设备上。

  • GPU:“cuda”
  • CPU:“cpu”
x = torch.zeros(5, 3, dtype=torch.long)
# 如果服务器上已经安装了GPU和CUDA
if torch.cuda.is_available():
    # 定义一个设备对象, 这里指定成CUDA, 即使用GPU
    device = torch.device("cuda")
    # 直接在GPU上创建一个Tensor
    y = torch.ones_like(x, device=device)
    # 将在CPU上面的x张量移动到GPU上面
    x = x.to(device)
    # x和y都在GPU上面, 才能支持加法运算
    z = x + y
    # 此处的张量z在GPU上面
    print(z)
    # 也可以将z转移到CPU上面, 并同时指定张量元素的数据类型
    print(z.to("cpu", torch.double))

tensor([[1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1]], device='cuda:0')
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)

3 Pytorch中的 autograd

在整个 Pytorch 框架中,所有的神经网络本质上都是一个autograd package(自动求导工具包),它提供了一个对 Tensors 上所有的操作进行自动微分的功能。

3.1 torch.Tensor 介绍

torch.Tensor 是整个 package 中的核心类

  • 如果将属性.requires_grad 设置为 True,它将追踪在这个类上定义的所有操作。
  • 当代码要进行反向传播的时候,直接调用 .backward() 就可以自动计算所有的梯度(前提是属性.requires_grad 设置为 True)。
  • 在这个Tensor上的所有梯度将被累加进属性 .grad 中。
  • 如果想终止一个Tensor 在计算图中的追踪回溯(反向传播),只需要执行.detach()就可以将该Tensor从计算图中撤下,在未来的回溯计算中也不会再计算该Tensor。
  • 如果想终止对整个计算图的追踪回溯,也就是不再进行方向传播求导数的过程,也可以采用代码块的方式with torch.no_grad():,这种方式非常适用于对模型进行 预测 的时候,因为预测阶段不再需要对梯度进行计算。

torch.Function是和torch.Tensor 同等重要的一个核心类,

  • torch.Function和Tensor共同构建了一个完整的类, 每一个Tensor拥有一个.grad_fn属性,代表引用了哪个具体的 Function 创建了该Tensor。
  • 如果某个张量Tensor是用户自定义的,则其对应的grad_fn is None。

3.2 torch.Tensor 操作

# 不设置requires\_grad
x1 = torch.ones(3, 3)
print(x1)
# 设置requires\_grad
x = torch.ones(2, 2, requires_grad=True)
print(x)

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])


![img](https://img-blog.csdnimg.cn/img_convert/087af6c8656065df61997dac6962eb9c.png)
![img](https://img-blog.csdnimg.cn/img_convert/62596a5a4189c28578830f3230680647.png)
![img](https://img-blog.csdnimg.cn/img_convert/ba8cc65432d75fe2d9f778970645cb1d.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

ad=True)
print(x)

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])


[外链图片转存中...(img-5cJXTX1o-1714244002178)]
[外链图片转存中...(img-bu35hupD-1714244002178)]
[外链图片转存中...(img-aEC2FLQE-1714244002178)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

  • 13
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值