网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
3.2 常用方法
深度学习实现的主要流程:
- 数据获取
- 数据处理
- 模型创建与训练
- 模型测试与评估
- 模型预测
(1)导入tf.keras
使用 tf.keras
,首先需要在代码开始时导入tf.keras
import tensorflow as tf
from tensorflow import keras
(2)数据输入
对于小的数据集,可以直接使用 numpy
格式的数据进行训练、评估模型,对于大型数据集或者要进行跨设备训练时使用 tf.data.datasets
来进行数据输入。
(3)模型构建
- 简单模型使用
Sequential
进行构建 - 复杂模型使用函数式编程来构建
- 自定义layers
(4)训练与评估
- 配置训练过程
# 配置优化方法,损失函数和评价指标
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical\_crossentropy',
metrics=['accuracy'])
- 模型训练
# 指明训练数据集,训练epoch,批次大小和验证集数据
model.fit/fit_generator(dataset, epochs=10,
batch_size=3,
validation_data=val_dataset,
)
- 模型评估
# 指明评估数据集和批次大小
model.evaluate(x, y, batch_size=32)
- 模型预测
# 对新的样本进行预测
model.predict(x, batch_size=32)
(5)回调函数(callbacks)
回调函数用在模型训练过程中,来控制模型训练行为,可以自定义回调函数,也可使用tf.keras.callbacks
内置的 callback
:
ModelCheckpoint
:定期保存 checkpoints。LearningRateScheduler
:动态改变学习速率。EarlyStopping
:当验证集上的性能不再提高时,终止训练。TensorBoard
:使用 TensorBoard 监测模型的状态。
(6)模型的保存和恢复
- 只保存参数
# 只保存模型的权重
model.save_weights('./my\_model')
# 加载模型的权重
model.load_weights('my\_model')
- 保存整个模型
# 保存模型架构与权重在h5文件中
model.save('my\_model.h5')
# 加载模型:包括架构和对应的权重
model = keras.models.load_model('my\_model.h5')
3.3 模型入门案例
- 模块导入
# # 导入其他相关的库
# 绘图,获取数据集
import seaborn as sns
# 数值计算
import numpy as np
# 机器学习
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
# 逻辑回归
from sklearn.linear_model import LogisticRegressionCV
# 深度学习
# 用于模型搭建
from tensorflow.keras.models import Sequential
# 构建模型的层和激活方法
from tensorflow.keras.layers import Dense, Activation
# 数据处理的辅助工具
from tensorflow.keras import utils
注意:LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证,以及选择正则化系数C以外, LogisticRegression和LogisticRegressionCV的使用方法基本相同。
- 数据集处理
(1)获取数据集
iris = sns.load_dataset("iris")
# print(type(iris)) pandas.core.frame.DataFrame
iris.head()
注:
- 我们常用 sklearn.datasets 的 load_*() 获取数据集,返回 Bunch 对象
- seaborn 库内置了十几个数据集,也可以获取数据集,返回数据集的类型为 DataFrame
以下为拓展,本例中仍使用 seaborn 获取的数据集
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
type(iris) # sklearn.utils.\_bunch.Bunch
# print(dir(iris)) # 查看data所具有的属性或方法
# print(iris.DESCR) # 查看数据集的简介
iris = pd.DataFrame(data=iris.data,columns=iris.feature_names)
iris.head()
可以注意到使用 sklearn 中的鸢尾花数据集没有标签值
(2)数据展示
另外,利用 seaborn 中 pairplot 函数探索数据特征间的关系:
# sns.pairplot()用来展示两两特征之间的关系
# hue 针对某一字段进行分类 ,不同类别的点会以不同的颜色显现出来
sns.pairplot(iris,hue="species")
(3)数据集划分
# 确定特征值和目标值
# X = iris.iloc[:, :4]
# y = iris.iloc[:, 4]
# type(X),type(y) # (pandas.core.frame.DataFrame, pandas.core.series.Series)
X = iris.values[:, :4]
y = iris.values[:, 4]
# type(X),type(y) # (numpy.ndarray, numpy.ndarray)
# 数据集的划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5,random_state=0) # 返回numpy.ndarray类型数据
- sklearn 实现
# 实例化分类器
estimator = LogisticRegressionCV()
# 训练
estimator.fit(X_train, y_train)
# 计算准确率并进行打印
print("Accuracy = {0:.2f}".format(estimator.score(X_test, y_test))) # 冒号左侧的0表示对应参数的索引,此处只有一个参数0可省略
# 0.93
注意:
- LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证,以及选择正则化系数C以外, LogisticRegression和LogisticRegressionCV的使用方法基本相同。
- Keras 实现
在sklearn中我们只要实例化分类器并利用fit方法进行训练,最后衡量它的性能就可以了,那在tf.keras中与在sklearn非常相似,不同的是:
- 构建分类器时需要进行模型搭建(分类器需要自己去构建)
- 数据采集时,sklearn可以接收字符串型的标签,如:“setosa”,但是在 tf.keras 中需要对标签值进行热编码,如下所示:
(1)对标签值热编码
有很多方法可以实现热编码,比如 pandas 中的 get_dummies() ,在这里我们使用 tf.keras 中的方法进行热编码:
def onehot\_encode\_object\_array(arr):
# 去重获取全部的类别
# return\_inverse为True时:会构建一个递增的唯一值的新列表,并返回旧列表arr中的值在新列表uniques中的索引列表ids
uniques, ids = np.unique(arr, return_inverse=True)
# 返回热编码的结果
return utils.to_categorical(ids, len(uniques))
# 训练集热编码
y_train_onehot = onehot_encode_object_array(y_train)
# 测试集热编码
y_test_onehot = onehot_encode_object_array(y_test)
注意:
np.unique
将数组中的元素进行去重操作,详见:https://blog.csdn.net/Hhjnv/article/details/122916912to_categorical()
用于分类,将标签转为one-hot编码,详见:https://blog.csdn.net/nima1994/article/details/82468965
(2)模型搭建
在 sklearn中,模型都是现成的。
而 tf.Keras
是一个神经网络库,我们需要根据数据和标签值构建神经网络,神经网络可以发现特征与标签之间的复杂关系。
神经网络是一个高度结构化的图,其中包含一个或多个隐藏层,每个隐藏层都包含一个或多个神经元。
神经网络有多种类别,该程序使用的是 密集型神经网络,也称为 全连接神经网络:一个层中的神经元将从上一层中的每个神经元获取输入连接。例如,下图显示了一个密集型神经网络,其中包含 1 个输入层、2 个隐藏层以及 1 个输出层
上图 中的模型经过训练并馈送未标记的样本时,它会产生 3 个预测结果:相应鸢尾花属于指定品种的可能性。对于该示例,输出预测结果的总和是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。
与上一层完全连接的隐藏层称为 密集层。在图中,两个隐藏层都是密集的。
TensorFlow tf.keras API 是创建模型和层的首选方式。通过该 API,可以轻松地构建模型并进行实验,而将所有部分连接在一起的复杂工作则由 Keras 处理。
tf.keras.Sequential
模型是层的线性堆叠。该模型的构造函数会采用一系列层实例;在本示例中,采用的是 2 个密集层(分别包含 10 个节点)以及 1 个输出层(包含 3 个代表标签预测的节点)。第一个层的 input_shape
参数对应该数据集中的 特征数量:
# 利用sequential方式构建模型
model = Sequential([
# 隐藏层1,激活函数是relu,输入大小有input\_shape指定
Dense(10, activation="relu", input_shape=(4,)),
# 隐藏层2,激活函数是relu
Dense(10, activation="relu"),
# 输出层
Dense(3, activation="softmax")
])
# 将搭建的神经网络用流程图表示出来
utils.plot_model(model,show_shapes=True)
# 查看模型结构
model.summary()
激活函数可决定层中每个节点的输出形状。这些非线性关系很重要,如果没有它们,模型将等同于单个层。激活函数有很多,但隐藏层通常使用 relu
。
隐藏层和神经元的理想数量取决于问题和数据集。与机器学习的多个方面一样,选择最佳的神经网络形状需要一定的知识水平和实验基础。一般来说,增加隐藏层和神经元的数量通常会产生更强大的模型,而这需要更多数据才能有效地进行训练。
对于每一个神经元都有
bias
参数和weight
参数 ,因为有 4 个输入特征值,所以每个神经元有 4 个weight
,10 个神经元就有 40 个weight
,每个神经元又有1个bias
,10 个神经元就有10 个bias
,所以隐藏层1有 50 个参数。隐藏层 2 和输出层参数以此类推。
(3)模型训练和预测
在训练和评估阶段,我们都需要计算模型的损失。这样可以衡量模型的预测结果与预期标签有多大偏差,也就是说,模型的效果有多差。
我们希望尽可能减小或优化这个值,所以我们设置优化策略和损失函数,以及模型精度的计算方法:
# 设置模型的相关参数:优化器,损失函数(交叉熵损失函数)和评价指标(可以有多个)
model.compile(optimizer='adam', loss='categorical\_crossentropy', metrics=["accuracy"])
可知,数组元素的数据类型为:dtype(‘O’),即(Python) objects
X_train.dtype # dtype('O')
X_test.dtype # dtype('O')
我们需要将训练集和测试集的特征值进行数据类型转换:
X_train = np.array(X_train,dtype = np.float32)


**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
# dtype('O')
X_test.dtype # dtype('O')
我们需要将训练集和测试集的特征值进行数据类型转换:
X_train = np.array(X_train,dtype = np.float32)
[外链图片转存中...(img-bPGPjc9V-1714922416128)]
[外链图片转存中...(img-pF4Kve59-1714922416129)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**