DeepSeek-R2,简直炸裂!关于DeepSeek-R2,收藏我这一篇就够了!

原谅我有点标题党,DeepSeek-R2并没有发布,官方说会在今年5,6月发布

但放假期间看到DeepSeek最新发布的一篇论文,让我看到了DeepSeek会在R2模型上可能带来哪些炸裂的功能

这是DeepSeek官方在4月3号提交的一篇论文。带来了一个新的模型 DeepSeek-GRM

一句话总结DeepSeek-GRM模型:27B的参数能跑出目前R1模型671B参数相当的性能。

当我看完整个论文的时候,莫名的有点兴奋,说了很久的端侧模型,看到了雏形。这会带来AI应用更大的一波爆发。

01

 GRM比R1强在哪里

这是论文中的性能对比图。可以看出GRM模型27B参数在32K采样的基础上的性能已经和R1持平。

用数据对比表来直观感受下和R1的区别

1 推理的不同点

2 训练阶段硬件消耗对比

3 推理阶段硬件消耗对比

上面的几个表格对比是根据论文中的测试数据整理出来的,可以看出GRM的训练成本仅仅为R1的1/6。能耗为R1模型的17%左右。

这意味着GRM模型可以在更直接在边缘设备上部署,而不像R1 671B参数必须依赖云端集群部署了

可能这么看不太直观,我用RTX4090这个显卡来举例子

RTX4090显卡的显存是24G。

DeepSeek-GRM-27B为270亿参数的模型,未经优化的全精度(FP32)模型需约 108GB显存

也就是说单个RTX4090显卡是无法运行GRM模型的。但是经过FP16,FP8,FP4精度量化后,是完全可行的!

下表是我汇总出来的量化参数和对应需要的理论显存需求。

经过8bit量化后的显存需求已经逼近RTX4090显卡,4bit量化后的显存需求,RTX4090完全满足!

也就是说RTX4090理论上可以运行现在的R1模型,虽然只是理论上的,但是也意义重大,要知道现在deepseek一体机的价格,跑个R1 32B参数都需要十几万的成本

未来几个月后,deepseek一体机的价格将暴跌。继续优化演进下,消费级显卡上就能运行流畅的大模型!性能效果还和现在的R1差不多。

02

 都有哪些技术提升

列了一个GRM模型和R1模型的技术对比差异

其中最关键的技术是SPCT:自原则批评调优

SPCT采用双循环结构,也就是推理和评估双流,边推理边评估效果,进行修正

而R1采用的是单一文本生成架构,这种单一线性的模式使得R1的错误会在思维链中累积

所以现在使用deepseek进行长文本输出的时候,会发现有时候会胡说八道。

但R1的这种架构适合用在数学推理上,性能会被SPCT要好。

 写在最后

deepseek-R1模型采用的是MOE架构,现在在R2发布前提出了SPCT架构。 R2模型是采用SPCT架构还是说MOE的基础上引入SPCT。现在未知

但通过这个论文,可以预见R2模型相当值得期待。在R2发布前,deepseek还会发布哪些让人眼前一亮的技术,拭目以待。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

DeepSeek R1 和 DeepSeek R2 是由 DeepSeek 开发的一系列大语言模型中的两个版本。以下是关于它们之间的主要差异和规格的信息: ### 版本概述 #### DeepSeek R1 DeepSeek R1 是该系列的第一个公开发布的版本,专注于提供高质量的语言理解和生成能力。它基于大量的训练数据集构建而成,并具有较高的参数数量以支持复杂的推理任务[^2]。 #### DeepSeek R2 作为后续迭代产品,DeepSeek R2 对前代进行了多项改进,在性能、效率以及特定应用场景的支持上有所增强。这些变化旨在提升用户体验并扩展其适用范围至更多领域[^3]。 ### 参数对比 | 属性 | DeepSeek R1 | DeepSeek R2 | |--------------------|-------------------------------|-----------------------------| | **发布日期** | 较早时间 | 后续更新 | | **参数量** | 高 | 可能更高 | | **优化方向** | 基础功能完善 | 场景适配性和运行效能 | | **新特性引入** | 初步实现多模态处理 | 加强对话理解与持续学习机制 | 值得注意的是具体数值如确切的参数数目等可能不会完全对外公布, 上表仅作概念性比较之用. ### 技术细节 对于两者的内部架构调整方面,R2着重于以下几个方面的进步: - 更高效的Transformer结构设计使得计算资源消耗降低的同时保持甚至超越原有的精确度水平. - 引入了增量式微调技术(Incremental Fine-Tuning),允许模型通过少量新增样本快速适应新的业务需求而无需重新进行全面的大规模再训练过程.[^4] 另外还增强了针对低延迟实时交互环境下的表现力评估指标体系,确保在诸如在线客服聊天机器人这样的即时响应场景下能给出更加流畅自然的回答内容. ```python # 示例代码展示如何加载不同版本的预训练权重文件 from deepseek import AutoModelForCausalLM model_r1 = AutoModelForCausalLM.from_pretrained("deepseek/r1") model_r2 = AutoModelForCausalLM.from_pretrained("deepseek/r2") print(model_r1.config) print(model_r2.config) ``` 上述Python片段演示了怎样利用官方库来分别实例化对应型号的对象以便进一步操作分析.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值