自OpenAI o1发布后引发了大型推理模型(LRM)研究热潮,这不,阿里又开源了Marco-o1。
Marco-o1更加重视开放式问题的解决,目标是解决这个问题:“o1模型能否有效地推广到缺乏明确标准且奖励难以量化的更广泛领域?”
Marco-o1由链式****思考(CoT)微调、蒙特卡洛树搜索(MCTS)、反射机制和创新的推理策略驱动——针对复杂的现实世界问题任务进行了优化。
经典的草莓(strawberry)问题,轻松拿下
在MGSM上Marco-o1准确性得到了提升
通过MCTS扩展解决方案空间
将蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)与大型语言模型(LLMs)集成,以增强Marco-o1模型的推理能力:
Marco-o1整体框架
- MCTS框架中的节点和动作:
-
在MCTS框架中,每个节点代表问题解决过程中的一个推理状态。
-
从节点可能的动作是由LLM生成的输出,这些输出代表推理链中的潜在步骤或微步骤。
- 展开和奖励计算:
-
在展开阶段,LLM继续推理过程直到达到一个终端状态。
-
通过计算每个状态的值来引导MCTS,这个值是通过计算信心分数得到的。
- 信心分数的计算:
-
对于在展开过程中生成的每个标记(token),通过将softmax函数应用于该标记的对数概率以及前5个替代标记的对数概率来计算其信心分数。
-
信心分数反映了所选标记相对于其他顶部选择的概率,有效地将分数标准化在0和1之间。
- 整体奖励分数:
-
在获得展开序列中所有标记的信心分数后,通过计算所有标记的平均信心分数来得出整体奖励分数。
-
这个平均值作为奖励信号,评估在展开期间采取的推理路径的质量。更高的整体奖励分数表示更有信心且可能更准确的推理路径。
- 解决方案空间的扩展:
- 通过这种方法,有效地扩展了解决方案空间,允许模型探索大量的推理路径,并根据计算出的信心分数选择最可能的路径。
实验结论与case分析
-
实验结果表明,Marco-o1模型在不同语言和配置下提高了推理能力。
-
由于使用信心分数作为奖励,树搜索结果表现出显著的随机性,目前还无法确定哪种行动策略更优越。
-
随着奖励信号变得更加准确,MCTS提供的更大解决方案空间将展示出更大的潜力。
数学推理case分析
MCTS扩展了正确答案的解决方案空间。在MGSM数据集上,Marco-o1-CoT(左)与Marco-o1-MCTS(步)(右)的比较。尽管Marco-o1-CoT未能提供正确答案,但将MCTS与步级动作集成允许模型探索更广泛的解决方案空间,增加了找到正确解决方案的可能性。
更细的粒度与微步增强了问题解决能力。在MGSM数据集上,Marco-o1-MCTS(步)(左)与Marco-o1-MCTS(32个标记的微步)(右)的比较。步级动作策略没有得出正确答案,但通过使用更细粒度的32个标记的微步,模型成功地导航了解决方案空间以找到正确答案,展示了增加动作粒度的有效性。
翻译任务case分析
俚语表达“它如此美丽以至于令人着迷,上部有明显的韩式风格,柔软蓬松的材质厚度恰到好处,并且有底层的衬托,创造出独特且适合日常穿着的装扮”的翻译比较。
俚语表达“它如此美丽!而且它如此便宜,超级直且不卷曲。买它,买它!”的翻译比较。
使用Marco-o1翻译任务演示俚语表达“这双鞋鞋底舒适,强烈推荐购买”。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓