摘要:2024 年 1 月 5 日,DeepSeek 发布首个大模型 DeepSeek LLM,迈出了它在 AI 领域的第一步。此后,它不断推陈出新,5 月宣布开源第二代 MoE 大模型 DeepSeek-V2,12 月 26 日,DeepSeek-V3 首个版本上线并同步开源。到了 2025 年 1 月 20 日,DeepSeek 正式发布 DeepSeek-R1 模型,在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,震惊了整个 AI 界。仅仅过了一个月,DeepSeek 的日活跃用户数突破 3000 万大关,成为史上最快达成这一里程碑的应用,其影响力可见一斑。
强大的 DeepSeek 也需要正确的引导,才能发挥出它的最大潜力。而提示词,就是我们与 DeepSeek 沟通的桥梁,是引导它生成高质量回答的关键。掌握 DeepSeek 的提示词技巧,就如同掌握了一把开启宝藏的钥匙,能够让我们在使用 DeepSeek 的过程中事半功倍,获得更加精准、高效的服务。接下来,就让我们一起探索 DeepSeek 提示词的奥秘吧!
-
为什么需要提示词技巧
-
提示词基础技巧
-
三个具体案例
01
—
为什么需要提示词技巧
想象一下,你拥有一位超级智能的助手,它知识渊博、能力超群,能为你解决各种难题。但是,如果你无法准确地向它传达你的需求,它又如何能发挥出最大的作用呢?这就是掌握 DeepSeek 提示词技巧的重要性所在。
在使用 DeepSeek 时,提示词就像是我们与它沟通的语言,准确、清晰的提示词能够让 DeepSeek 更好地理解我们的意图,从而生成更符合我们需求的回答。相反,如果提示词使用不当,就可能导致 DeepSeek 给出的回答不尽人意,甚至完全偏离我们的期望。
比如,当你想要写一篇关于人工智能对教育影响的文章时,如果你只是简单地输入 “写一篇关于人工智能的文章”,DeepSeek 可能会生成一篇内容宽泛、缺乏针对性的文章,因为它并不知道你具体关注的是人工智能对教育的影响。但如果你输入 “以人工智能对教育的影响为主题,撰写一篇 1000 字左右的议论文,需包含正反两方面观点及具体案例”,DeepSeek 就能明确你的需求,生成一篇逻辑严谨、内容丰富的文章,详细阐述人工智能在教育领域的应用、带来的机遇和挑战等。
再比如,在代码编写中,如果你需要 DeepSeek 帮你生成一段 Python 代码来实现数据排序功能,“写一段 Python 代码” 这样的提示词太过模糊,DeepSeek 可能无法准确理解你的需求。而 “用 Python 编写一个函数,实现对列表中数字的排序,并返回排序后的列表” 这样具体的提示词,就能让 DeepSeek 生成符合你要求的代码 。
通过这些对比案例,我们可以清晰地看到,掌握提示词技巧能够让我们与 DeepSeek 的交互更加高效、精准,充分发挥它的强大功能,为我们的工作、学习和生活带来更多的便利和价值。那么,如何才能掌握这些实用的提示词技巧呢?接下来,就让我们一起深入探索。
02
—
DeepSeek 提示词基础技巧
明确需求
在使用 DeepSeek 时,明确需求是至关重要的第一步。我们的提问越具体、清晰,DeepSeek 就能越准确地理解我们的意图,从而给出更符合期望的回答。这就好比我们向一个人问路,如果只是说 “我要去某个地方”,对方很难提供准确的指引;但如果我们详细说明目的地的名称、所在区域以及周边标志性建筑等信息,对方就能轻松地为我们指明方向。
比如,当我们想要了解人工智能在医疗领域的应用时,如果只是简单地问 “人工智能有什么用?”,DeepSeek 可能会给出一个宽泛的回答,涵盖人工智能在各个领域的应用,而无法满足我们对医疗领域的特定需求。相反,如果我们问 “人工智能在医疗诊断、疾病预测和药物研发等方面有哪些具体应用?请举例说明。”,DeepSeek 就能针对我们的问题,详细阐述人工智能在医疗领域的具体应用案例,如人工智能辅助医学影像诊断,能够快速准确地识别疾病;通过大数据分析进行疾病预测,提前制定预防措施;以及利用机器学习算法加速药物研发过程,降低研发成本等。
再比如,在写作方面,如果我们需要 DeepSeek 帮我们创作一篇小说,“写一篇小说” 这样的提示词太过模糊,DeepSeek 可能不知道从何下手,或者生成的小说内容不符合我们的预期。而 “创作一篇以古代仙侠为背景的长篇小说,主角是一位出身平凡但天赋异禀的少年,在修炼过程中历经磨难,最终成为一代大侠。要求情节跌宕起伏,包含精彩的打斗场面和感人的情感线,字数在 10 万字左右” 这样明确的需求,能让 DeepSeek 清楚地知道我们想要的小说类型、主题、人物设定和情节要求等,从而创作出更符合我们心意的小说。
例如:
1.明确你的需求
-尽量清晰地描述你的问题或任务。比如:
-不好的提示词:“告诉我一些东西。”
-更好的提示词:“请帮我总结一下人工智能的发展历史。”
提供上下文
提供上下文信息是提升 DeepSeek 回答质量的关键技巧之一。上下文就像是问题的背景故事,它能帮助 DeepSeek 更好地理解问题的来龙去脉,把握问题的核心要点,从而生成更准确、相关的回答。
以翻译任务为例,如果我们只说 “翻译这句话”,DeepSeek 不知道具体是哪句话,自然无法完成翻译。但如果我们提供具体的句子,如 “请将‘I’m looking forward to the weekend.’翻译成中文”,DeepSeek 就能准确地将其翻译为 “我期待着周末的到来”。
在实际应用中,上下文的作用远不止于此。比如,当我们询问 “这个政策对我们公司有什么影响?” 时,DeepSeek 可能会一头雾水,因为它不知道我们所说的 “这个政策” 具体指的是什么。但如果我们补充上下文信息,“最近国家出台了新能源汽车补贴政策,我们公司是一家新能源汽车生产企业,这个政策对我们公司有什么影响?”,DeepSeek 就能结合新能源汽车补贴政策的具体内容和公司的业务特点,分析出该政策对公司在生产规模、市场竞争、成本控制等方面的影响,为我们提供有价值的参考意见。
再比如,在讨论历史事件时,如果我们问 “这场战争的结果如何?”,DeepSeek 可能需要我们进一步明确是哪场战争。但如果我们说 “在第二次世界大战中,诺曼底登陆这场战役的结果如何?它对整个战争局势产生了怎样的影响?”,DeepSeek 就能根据我们提供的上下文信息,详细阐述诺曼底登陆战役的结果,如盟军成功开辟欧洲第二战场,加速了纳粹德国的灭亡;以及该战役对战争局势的影响,如改变了欧洲战场的战略态势,增强了反法西斯同盟的信心等。
例如:
提供上下文
-如果问题需要背景信息,可以在提示词中加入上下文。比如:
-不好的提示词:“翻译这句话。”
-更好的提示词:“请将以下英文句子翻译成中文:‘The future of AI is promising.’”
指定格式
在与 DeepSeek 交互的过程中,指定格式能够让我们更方便地获取和整理信息,提高工作效率。不同的任务和场景,可能需要不同的格式输出,我们可以根据实际需求,在提示词中明确要求 DeepSeek 以特定的格式回答问题。
在数据分析场景中,如果我们需要分析一组销售数据,了解不同产品的销售额、销售量以及销售趋势等信息,“请分析这组销售数据,告诉我不同产品的销售情况” 这样的提示词,DeepSeek 给出的回答可能不够直观和清晰。但如果我们说 “请以表格的形式,列出不同产品的名称、销售额、销售量,并绘制折线图展示过去一年的销售趋势”,DeepSeek 就能按照我们的要求,以表格和图表的形式呈现数据,让我们一目了然地看到销售数据的各项指标和变化趋势,方便我们进行数据分析和决策。
在撰写报告时,我们也可以指定格式。比如,“请撰写一份关于公司季度业绩的报告,内容包括收入、支出、利润等方面的分析,要求采用 PPT 大纲的形式,每个要点都要有简要的说明”,这样 DeepSeek 生成的 PPT 大纲,能够帮助我们快速搭建报告框架,明确报告的重点内容和逻辑结构,节省我们撰写报告的时间和精力。
在学习场景中,指定格式同样有用。例如,当我们学习历史知识时,“请介绍一下唐朝的历史” 这样的问题,回答可能会比较零散。但如果我们说 “请以时间轴的形式,梳理唐朝从建立到灭亡的重要事件和发展阶段,每个事件都要注明时间和简要描述”,DeepSeek 就能按照时间顺序,清晰地呈现唐朝历史的脉络,帮助我们更好地理解和记忆历史知识。
例如:
指定格式
-如果你希望回答以特定格式呈现, 可以在提示词中说明。比如:
-不好的提示词:“列出一些健康饮食的建议。”
-更好的提示词:“请以bullet points的形式列出5条健康饮食的建议。”
分步骤提问
对于复杂任务,分步骤提问是一种非常有效的策略。将复杂问题拆解成多个小问题,逐步引导 DeepSeek 进行思考和回答,能够让我们更清晰地理解问题的各个方面,也有助于 DeepSeek 生成更准确、详细的回答。
以编程为例,假设我们要开发一个电商网站的用户管理系统,这是一个复杂的任务。如果直接问 “帮我开发一个电商网站的用户管理系统”,DeepSeek 可能会感到无从下手,或者给出一个过于笼统的回答。但如果我们分步骤提问,情况就会大不相同。
第一步,我们可以问 “设计一个电商网站用户管理系统的数据库表结构,需要包含用户基本信息表、用户订单表和用户收藏表,每个表列出主要字段”,这样 DeepSeek 就能专注于数据库表结构的设计,给出详细的表结构和字段信息。
第二步,我们接着问 “基于上述数据库表结构,用 Python 的 Flask 框架编写用户注册功能的代码,包括前端页面和后端逻辑”,此时 DeepSeek 会根据第一步的数据库表结构,编写用户注册功能的代码。
第三步,我们再问 “编写用户登录功能的代码,实现密码加密和登录验证,并与之前的用户注册功能进行整合”,通过这样一步步的提问,我们能够逐步完成用户管理系统的开发,每一步都能得到 DeepSeek 针对性的回答和帮助。
在写作领域,分步骤提问同样适用。比如我们要写一篇关于人工智能发展趋势的论文,我们可以先问 “列举人工智能近年来的主要技术突破”,然后再问 “这些技术突破对人工智能未来发展趋势有哪些影响”,最后问 “结合当前社会需求,分析人工智能在不同领域的应用前景和挑战”,通过这样的分步骤提问,我们能够更有条理地组织论文内容,使论文更加丰富和深入。
使用角色设定
使用角色设定是让 DeepSeek 回答更具专业性和针对性的有效方法。通过让 DeepSeek 扮演特定角色,我们可以引导它从特定的专业角度出发,运用该角色所具备的知识和经验来回答问题,从而获得更符合需求的回答。
当我们需要了解医学知识时,我们可以设定 “你是一位资深的内科医生,请解释一下高血压的发病原因、症状和治疗方法”,这样 DeepSeek 就会以内科医生的身份,用专业的医学术语和临床经验来回答问题,给出的回答会更加准确和权威。
在商业领域,若我们要制定一份市场营销策略,我们可以说 “你是一位资深的市场营销专家,我公司即将推出一款新的智能手机,目标客户群体是年轻的上班族,请为我制定一份详细的市场营销策略,包括市场定位、推广渠道和促销活动等方面”,通过这样的角色设定,DeepSeek 能够站在市场营销专家的角度,结合市场趋势和目标客户群体的特点,为我们制定出更具针对性和可行性的市场营销策略。
再比如,当我们进行创意写作时,我们可以设定 “你是一位著名的科幻小说作家,以未来星际旅行中的神秘星球为背景,构思一个精彩的故事大纲”,这样 DeepSeek 就能发挥科幻小说作家的想象力和创造力,为我们构思出充满创意和奇幻色彩的故事大纲。
尝试开放式问题
尝试开放式问题能够激发 DeepSeek 给出更详细、丰富的回答。开放式问题不像封闭式问题那样只需要简单的 “是” 或 “否” 回答,它鼓励 DeepSeek 展开阐述,提供更多的信息和观点。
以人工智能为例,“AI 有用吗?” 这样的封闭式问题,DeepSeek 可能只简单回答 “有用”,无法提供更多有价值的信息。但如果我们问 “人工智能在现代社会中有哪些重要应用?它的发展前景如何?” 这样的开放式问题,DeepSeek 就会详细列举人工智能在医疗、交通、教育、金融等各个领域的应用案例,如在医疗领域辅助疾病诊断、在交通领域实现智能交通管理等;同时,还会分析人工智能的发展趋势,如技术突破方向、可能面临的挑战以及对未来社会的深远影响等,让我们对人工智能有更全面、深入的了解。
在探讨历史事件时,“秦始皇统一六国是在公元前 221 年吗?” 这样的封闭式问题,答案只是简单的 “是”。但如果问 “秦始皇统一六国对中国历史的发展产生了哪些深远影响?” 这一开放式问题,DeepSeek 就会从政治、经济、文化、社会等多个方面进行分析,如政治上建立了中央集权制度,为后世历代王朝的政治制度奠定了基础;经济上统一度量衡,促进了经济的交流与发展;文化上统一文字,有利于文化的传承和传播等,使我们对这一历史事件的认识更加深刻和全面。
03
—
三个案例
1、如何使用DeepSeek制作可视化图表?
提示词案例:
2、如何使用DeepSeek制作PPT?
提示词案例:
3、如何使用DeepSeek设计海报?
提示词案例:
回答不符合预期
在使用 DeepSeek 的过程中,有时我们会遇到回答不符合预期的情况。这可能是由于多种原因造成的,比如需求不明确,导致 DeepSeek 无法准确理解我们的意图;提示词存在歧义,让 DeepSeek 产生误解;或者是我们提供的上下文信息不足,使得 DeepSeek 的回答缺乏针对性。
比如,当我们想要了解如何提高公众号文章的阅读量时,如果只是简单地问 “怎么提高公众号阅读量?”,这个问题太过宽泛,DeepSeek 可能会给出一些通用的建议,如优化标题、内容质量等,但这些建议可能不够具体和深入,无法满足我们的实际需求。这就是因为我们的需求不够明确,没有具体指出当前公众号的定位、受众群体、文章类型等关键信息 。
再比如,“帮我写一篇关于苹果的文章”,这里的 “苹果” 既可以指水果,也可以指苹果公司,提示词的歧义就会让 DeepSeek 不知道该从哪个角度来创作文章,从而导致回答不符合预期。
当遇到回答不符合预期的情况时,我们可以采取以下解决办法。首先,重新审视自己的需求,尽可能详细、准确地描述问题,明确任务的目标、范围和具体要求。比如,将上述提高公众号阅读量的问题改为 “我运营的公众号主要面向职场新人,分享职场技能和经验,最近文章阅读量不理想,请分析原因并提供具体的提升策略,包括标题优化、内容创作方向、推广渠道等方面”,这样 DeepSeek 就能更清楚地了解我们的需求,给出更有针对性的回答。
其次,如果是提示词存在歧义,我们要重新组织语言,消除歧义。比如,将关于苹果的问题改为 “请以水果苹果为主题,撰写一篇介绍其营养价值、食用方法和品种分类的科普文章”,确保 DeepSeek 能够准确理解我们的意图。
模型理解错误
模型理解错误也是使用 DeepSeek 时可能遇到的问题之一。这种情况通常表现为 DeepSeek 对一些专业术语、特定语境下的词汇或复杂的语义理解出现偏差,从而导致回答错误或不准确。
在医学领域,询问 “心肌梗死的治疗方法有哪些?”,如果 DeepSeek 对 “心肌梗死” 这个专业术语的理解不够准确,可能会给出一些不完整或错误的治疗方法,如遗漏了关键的介入治疗手段,或者对药物治疗的剂量和使用方法描述错误。这是因为医学术语具有很强的专业性和精确性,模型如果没有经过充分的训练和学习,就容易出现理解偏差。
再比如,在特定语境下,“苹果落地” 这个词汇在物理学中是指物体在重力作用下的自由落体现象,但如果 DeepSeek 没有理解到这个语境,可能会将其误解为日常生活中苹果从树上掉落的普通场景,从而无法从物理学的角度进行深入分析和解答。
针对模型理解错误的问题,我们可以采取以下解决策略。一方面,我们可以尝试修改提示词,用更通俗易懂的语言来表达问题,或者对专业术语进行简单的解释。比如,将 “心肌梗死的治疗方法有哪些?” 改为 “心脏的血管突然被堵塞,导致心肌缺血坏死,这种情况被称为心肌梗死,它的治疗方法有哪些?”,通过对心肌梗死的简单解释,帮助 DeepSeek 更好地理解问题。
另一方面,我们可以补充更多的背景信息和上下文,引导 DeepSeek 正确理解问题。例如,在询问关于 “苹果落地” 的问题时,可以补充 “从物理学的角度分析,苹果落地这一现象背后的原理是什么?”,通过明确语境和分析角度,让 DeepSeek 能够准确把握问题的核心,给出更准确的回答。
掌握 DeepSeek 提示词技巧,就像是拥有了一把开启智能世界宝藏的钥匙,能够让我们在与 DeepSeek 的交互中,获得更加精准、高效、满意的回答。从明确需求、提供上下文、指定格式等基础技巧,到分步骤提问、使用角色设定、尝试开放式问题等进阶技巧,每一种技巧都有其独特的作用和价值,能够帮助我们解决不同场景下的各种问题。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓