告别WSL!Windows直装Unsloth大模型微调全攻略:5分钟实现零配置部署

Unsloth 现在可以在 Windows 上运行!🦥

无需 Linux 或 WSL,即可在 Windows 上本地微调 LLM。

注意现在不支持 Python 3.13,推荐使用 3.12、3.11 或 3.10。

1. 安装 NVIDIA 驱动程序

直接安装最新版本的 GPU 驱动程序。

https://www.nvidia.com/Download/index.aspx

2. 安装 Visual Studio C++

默认情况下,C++ 不会随 Visual Studio 一起安装,因此请确保选择所有 C++ 选项。还要选择适用于 Windows 10/11 SDK 的选项。

Visual Studio 社区版下载地址:

https://visualstudio.microsoft.com/vs/community/

在安装程序中,导航到各个组件并选择此处列出的所有选项:

  • .NET Framework 4.8 SDK

  • .NET Framework 4.7.2 目标包

  • C# 和 Visual Basic Roslyn 编译器

  • MSBuild

  • MSVC v143 - VS 2022 C++ x64/x86 构建工具

  • C++ 2022 可再发行更新

  • 适用于 Windows 的 C++ CMake 工具

  • C++/CLI 支持 v143 构建工具(最新)

  • MSBuild 支持 LLVM (clang-cl) 工具集

  • 适用于 Windows 的 C++ Clang 编译器 (19.1.1)

  • Windows 11 SDK (10.0.22621.0)

  • Windows 通用 CRT SDK

  • C++ 2022 可再发行 MSM

或者你可以按 Win + R 快捷键搜索 PowerShell,回车打开 PowerShell:

将下面的指令粘贴到 PowerShell 并运行(–installPath 填你的 Visual Studio 安装路径):

"C:\Program Files (x86)\Microsoft Visual Studio\Installer\vs_installer.exe" modify ^``--installPath "C:\Program Files\Microsoft Visual Studio\2022\Community" ^``--add Microsoft.Net.Component.4.8.SDK ^``--add Microsoft.Net.Component.4.7.2.TargetingPack ^``--add Microsoft.VisualStudio.Component.Roslyn.Compiler ^``--add Microsoft.Component.MSBuild ^``--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64 ^``--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest ^``--add Microsoft.VisualStudio.Component.VC.CMake.Project ^``--add Microsoft.VisualStudio.Component.VC.CLI.Support ^``--add Microsoft.VisualStudio.Component.VC.Llvm.Clang ^``--add Microsoft.VisualStudio.ComponentGroup.ClangCL ^``--add Microsoft.VisualStudio.Component.Windows11SDK.22621 ^``--add Microsoft.VisualStudio.Component.Windows10SDK.19041 ^``--add Microsoft.VisualStudio.Component.UniversalCRT.SDK ^``--add Microsoft.VisualStudio.Component.VC.Redist.MSM

3. 安装 Python 和 CUDA 工具包

按照说明安装 CUDA 工具包:

https://developer.nvidia.com/cuda-toolkit-archive

然后在此处安装 Miniconda:

https://www.anaconda.com/docs/getting-started/miniconda/install

4. 安装 PyTorch

安装 CUDA 驱动程序兼容的正确版本的 PyTorch:

https://pytorch.org/get-started/locally/

5. 安装 Unsloth

pip install "unsloth[windows] @ git+https://github.com/unslothai/unsloth.git"

如果你正在使用 GRPO 或计划使用 vLLM,目前 vLLM 不直接支持 Windows,而仅通过 WSL 或 Linux 支持。

注意

要在 Windows 上直接运行 Unsloth:

  • 从下面的 Windows 分支安装 Triton 并按照此处的说明操作(请注意,Windows 分支需要 PyTorch >= 2.4 和 CUDA 12)

    https://github.com/woct0rdho/triton-windows

  • 在 SFTTrainer 中,设置 dataset_num_proc=1 以避免崩溃问题:

trainer = SFTTrainer(``dataset_num_proc=1,``...``)

如果你在安装过程中看到奇怪的错误:

  • 安装 torch 和 triton。转到 https://pytorch.org 进行安装。例如 pip install torch torchvision torchaudio triton

  • 确认 CUDA 是否安装正确。尝试 nvcc。如果失败,则需要安装 cudatoolkit 或 CUDA 驱动程序。

  • 手动安装 xformers。你可以尝试安装 vllm 并查看 vllm 是否成功。使用 python -m xformers.info 检查 xformers 是否成功 转到 https://github.com/facebookresearch/xformers。另一个选择是为 Ampere GPU 安装 flash-attn。

  • 仔细检查你的 Python、CUDA、CUDNN、torch、triton 和 xformers 版本是否相互兼容。PyTorch 兼容性矩阵可能会有用。

  • 最后,安装 bitsandbytes 并使用 python -m bitsandbytes 检查。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>好的,我现在需要回答用户关于在Windows系统上使用LM Studio本地部署DeepSeek R1 Distill (Qwen 7B)的方法及注意事项的问题。首先,我需要了解用户的需求,他们可能希望有一个详细的步骤指南,同时需要注意国内网络环境可能带来的挑战,比如下载速度慢或无法访问某些资源。 首先,我应该确认LM Studio是否支持该模型。LM Studio通常支持Hugging Face格式的模型,所以需要确认DeepSeek R1 Distill是否有对应的版本。可能需要用户从Hugging Face下载模型文件,但国内访问可能会有问题,所以需要建议使用镜像源或代理。 接下来是安装LM Studio的步骤。用户需要从官网下载安装程序,但官网下载可能较慢,可能需要提醒用户耐心等待或使用下载工具。安装过程相对简单,但需要确保系统满足最低要求,比如Windows版本和硬件配置,特别是显存和内存,因为Qwen 7B模型较大,可能需要较高的配置。 然后是关于模型下载的具体步骤。如果用户无法接访问Hugging Face,可能需要指导他们使用镜像网站,如hf-mirror.com,或者使用git-lfs的镜像配置。下载模型需要确保文件完整,可能需要校验哈希值,但用户可能不熟悉这些操作,所以需要简化说明。 模型加载部分需要指导用户在LM Studio中正确选择模型路径,并注意文件结构是否正确。可能出现的常见问题包括模型格式不兼容或路径错误,需要提醒用户检查。 运行模型时的注意事项,比如硬件资源不足,需要关闭其他占用内存或显存的程序。量化版本的选择也是一个重点,需要解释不同量化版本对资源的需求和性能的影响,帮助用户根据自身硬件选择合适的版本。 最后是网络问题的解决方案,可能需要详细说明如何配置镜像源或使用代理,特别是针对git-lfs的配置,因为用户可能不熟悉这些操作。另外,需要提醒用户遵守开源协议,特别是在商业使用时的注意事项。 总结来说,需要分步骤详细说明每个环节,同时预见到国内用户可能遇到的网络问题,并提供解决方案。确保语言简洁明了,避免使用过于专业的技术术语,让所有用户都能理解并跟随操作步骤。</think>以下是在Windows系统上使用LM Studio本地部署DeepSeek R1 Distill(Qwen 7B)的详细指南,针对国内网络环境特别优化: ### 一、准备工作 1. **硬件要求** - 显存:至少8GB(FP16量化版本需要20GB显存) - 内存:建议32GB及以上 - 存储:至少20GB可用空间(模型文件约14GB) 2. **软件环境** - Windows 10/11 64位系统 - 最新版NVIDIA驱动(建议使用535版本以上) - 安装Visual C++运行库 ### 二、安装LM Studio 1. **国内下载方式** - 官网连:https://lmstudio.ai/(如遇访问困难可尝试科学上网) - 备用下载点:建议通过国内开发者论坛(如V2EX/知乎)寻找最新分流资源 2. **安装注意事项** - 安装路径建议使用全英文目录 - 安装时关闭安全软件(避免误拦截) ### 三、模型获取(国内优化方案) 1. **推荐下载源** ```bash # 使用HF镜像站下载(需提前安装git-lfs) git clone https://hf-mirror.com/deepseek-ai/deepseek-llm-7b-r1-distill ``` 2. **手动下载方案** - 访问阿里云ModelScope:https://modelscope.cn/models - 搜索"DeepSeek-R1-Distill"选择7B版本 - 使用ModelScope提供的加速下载工具 3. **文件校验(确保下载完整) - 官方SHA256: ``` 7b-r1-distill: 2f1a5d3c8e9b4a7f...(需核对官方最新值) ``` ### 四、模型部署 1. **目录结构要求** ``` deepseek-7b-r1-distill/ ├── config.json ├── model.safetensors ├── tokenizer.model └── special_tokens_map.json ``` 2. **LM Studio加载步骤: 1. 启动软件后点击左下角「↕」图标 2. 选择"Open Model Folder" 3. 定位到模型存放目录 4. 选择对应的GGUF文件(推荐使用Q4_K_M量化版本) ### 五、运行优化设置 1. **GPU配置建议** ```json { "n_gpu_layers": 35, // 7B模型建议值 "main_gpu": 0, "tensor_split": "auto" } ``` 2. **中文输入优化** - 在Advanced Settings中调整: - Temperature设为0.7 - Repeat penalty设为1.1 - 上下文窗口设为32768 ### 六、常见问题处理 1. **CUDA内存不足** - 解决方案:尝试`--n-gpu-layers 20`减少GPU层数 - 备选方案:使用`q4_1`量化版本 2. **中文输出异常** - 检查tokenizer是否完整 - 在system prompt中明确要求中文输出 3. **下载中断处理** ```bash # 使用继续下载命令 GIT_LFS_SKIP_SMUDGE=1 git clone 模型地址 cd 模型目录 git lfs pull ``` ### 注意事项 1. **网络加速方案** - 推荐使用清华TUNA镜像配置git-lfs: ```bash git config --global lfs.url "https://mirror.sjtu.edu.cn/git-lfs/objects" ``` 2. **合规使用** - 严格遵守DeepSeek的《模型使用协议》 - 禁止通过API进行商业化部署(需单独授权) 3. **性能调优** - 推荐使用WSL2子系统获得更好性能 - 可配合ollama进行服务化部署 建议首次运行时打开任务管理器监控资源使用情况,根据实际硬件情况调整批次大小(batch_size)等参数。如遇持续OOM错误,可尝试更激进的量化方案(如q3_k_s)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值