Unsloth 现在可以在 Windows 上运行!🦥
无需 Linux 或 WSL,即可在 Windows 上本地微调 LLM。
注意现在不支持 Python 3.13,推荐使用 3.12、3.11 或 3.10。
1. 安装 NVIDIA 驱动程序
直接安装最新版本的 GPU 驱动程序。
https://www.nvidia.com/Download/index.aspx
2. 安装 Visual Studio C++
默认情况下,C++ 不会随 Visual Studio 一起安装,因此请确保选择所有 C++ 选项。还要选择适用于 Windows 10/11 SDK 的选项。
Visual Studio 社区版下载地址:
https://visualstudio.microsoft.com/vs/community/
在安装程序中,导航到各个组件并选择此处列出的所有选项:
-
.NET Framework 4.8 SDK
-
.NET Framework 4.7.2 目标包
-
C# 和 Visual Basic Roslyn 编译器
-
MSBuild
-
MSVC v143 - VS 2022 C++ x64/x86 构建工具
-
C++ 2022 可再发行更新
-
适用于 Windows 的 C++ CMake 工具
-
C++/CLI 支持 v143 构建工具(最新)
-
MSBuild 支持 LLVM (clang-cl) 工具集
-
适用于 Windows 的 C++ Clang 编译器 (19.1.1)
-
Windows 11 SDK (10.0.22621.0)
-
Windows 通用 CRT SDK
-
C++ 2022 可再发行 MSM
或者你可以按 Win + R 快捷键搜索 PowerShell,回车打开 PowerShell:
将下面的指令粘贴到 PowerShell 并运行(–installPath 填你的 Visual Studio 安装路径):
"C:\Program Files (x86)\Microsoft Visual Studio\Installer\vs_installer.exe" modify ^``--installPath "C:\Program Files\Microsoft Visual Studio\2022\Community" ^``--add Microsoft.Net.Component.4.8.SDK ^``--add Microsoft.Net.Component.4.7.2.TargetingPack ^``--add Microsoft.VisualStudio.Component.Roslyn.Compiler ^``--add Microsoft.Component.MSBuild ^``--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64 ^``--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest ^``--add Microsoft.VisualStudio.Component.VC.CMake.Project ^``--add Microsoft.VisualStudio.Component.VC.CLI.Support ^``--add Microsoft.VisualStudio.Component.VC.Llvm.Clang ^``--add Microsoft.VisualStudio.ComponentGroup.ClangCL ^``--add Microsoft.VisualStudio.Component.Windows11SDK.22621 ^``--add Microsoft.VisualStudio.Component.Windows10SDK.19041 ^``--add Microsoft.VisualStudio.Component.UniversalCRT.SDK ^``--add Microsoft.VisualStudio.Component.VC.Redist.MSM
3. 安装 Python 和 CUDA 工具包
按照说明安装 CUDA 工具包:
https://developer.nvidia.com/cuda-toolkit-archive
然后在此处安装 Miniconda:
https://www.anaconda.com/docs/getting-started/miniconda/install
4. 安装 PyTorch
安装 CUDA 驱动程序兼容的正确版本的 PyTorch:
https://pytorch.org/get-started/locally/
5. 安装 Unsloth
pip install "unsloth[windows] @ git+https://github.com/unslothai/unsloth.git"
如果你正在使用 GRPO 或计划使用 vLLM,目前 vLLM 不直接支持 Windows,而仅通过 WSL 或 Linux 支持。
注意
要在 Windows 上直接运行 Unsloth:
-
从下面的 Windows 分支安装 Triton 并按照此处的说明操作(请注意,Windows 分支需要 PyTorch >= 2.4 和 CUDA 12)
https://github.com/woct0rdho/triton-windows
-
在 SFTTrainer 中,设置 dataset_num_proc=1 以避免崩溃问题:
trainer = SFTTrainer(``dataset_num_proc=1,``...``)
如果你在安装过程中看到奇怪的错误:
-
安装 torch 和 triton。转到 https://pytorch.org 进行安装。例如 pip install torch torchvision torchaudio triton
-
确认 CUDA 是否安装正确。尝试 nvcc。如果失败,则需要安装 cudatoolkit 或 CUDA 驱动程序。
-
手动安装 xformers。你可以尝试安装 vllm 并查看 vllm 是否成功。使用 python -m xformers.info 检查 xformers 是否成功 转到 https://github.com/facebookresearch/xformers。另一个选择是为 Ampere GPU 安装 flash-attn。
-
仔细检查你的 Python、CUDA、CUDNN、torch、triton 和 xformers 版本是否相互兼容。PyTorch 兼容性矩阵可能会有用。
-
最后,安装 bitsandbytes 并使用 python -m bitsandbytes 检查。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓