全球首款开源AIGC数字人模型:免费使用,手机端即可运行!

在数字化浪潮的推动下,人工智能技术正以前所未有的速度渗透到各行各业中, 越来越多的AI概念正在深入我的的生活。

不少公司正在开发AI伴侣应用程序,这些应用程序能够提供情感支持和陪伴,如Replika AI,它允许用户与一个AI聊天机器人建立关系,随着时间的推移,AI伴侣会学习用户的偏好和习惯。

在这里插入图片描述

今天开源君就来和大家分享一个非常有趣的开源项目 - duix.ai,让开发者能够轻松创建和部署虚拟数字人。

项目地址:https://github.com/GuijiAI/duix.ai

简介

duix.ai,全称为"Dialogue User Interface System",是一个集成了数字化虚拟人与AI技术的开源项目,由硅基智能开发的,旨在打造一个数字人智能交互平台。它通过结合最新的人工智能研究成果,为用户提供了一系列强大的功能和工具,使得虚拟人不仅能够进行智能交互,还能够在多种商业场景中得到应用。

在这里插入图片描述

duix.ai允许开发者在Android和iOS等设备上一键部署,为用户提供即时的虚拟人互动体验。这个SDK不仅提供了直观的效果展示,还支持用户进行二次开发,可以根据提供的开放文档轻松开发出定制化的虚拟人应用。

在这里插入图片描述

duix.ai的目标是降低技术门槛,让更多企业和开发者能够快速接入并利用AI技术,推动数字化转型。不仅代表了技术的进步,更是对未来人机交互方式的一次大胆探索。

性能特色

  • 一键快速集成:无需客户提供技术团队进行配合,支持低成本快速部署在多种终端及大屏。

  • 网络依赖小:无网络环境可运行。

  • 可自由定制:可根据客户需求满足视频、媒体、客服、金融、广电等多个行业的多样化需求。

  • 画质流程清晰:模型支持50帧/秒以上的超流畅画面质量,超电影级标准的24帧/秒。

  • 突出的实时渲染能力:视频生成效率超过1:0.5(生成时长:生成耗时),达到直播/实时交互应用标准。

  • 真人级的交互质量:模型对动作、微表情乃至声音唇形的精准同步,实现。

  • 模型对算力要求低:无论是个人电脑、平板、车载系统,甚至是手机,都能流畅运行。

快速安装使用

Duix.ai提供了详细的文档和示例代码,帮助开发者快速上手。无论是Android还是iOS平台,Duix.ai都提供了相应的SDK和API,使得集成变得简单快捷。

Android平台上,需要支持Android 7.0至Android 13系统,硬件至少需要4核CPU和4G内存。

  • 在 build.gradle 文件中添加依赖配置。

  • 配置: 在AndroidManifest.xml中添加必要的权限,如INTERNET和MODIFY_AUDIO_SETTINGS等。

  • 初始化: 在应用的onCreate()方法中初始化DUIX对象,并设置回调以处理SDK事件。

  • 渲染: 使用RenderSink接口来接收和渲染数字人形象。

  • 播报: 通过提供wav文件路径启动数字人播报功能。

iOS平台,则需要Xcode和iOS 12.0以上环境,iPhone X及以上设备。

  • 安装: 通过Xcode将DUIX SDK集成到iOS项目中。

  • 初始化: 使用GJLDigitalManager类初始化数字人模型,并指定显示视图。

  • 渲染: 调用toStart方法开始渲染数字人。

  • 播报: 使用toSpeakWithPath方法播放音频文件,驱动数字人进行播报。

  • 控制: 提供了取消播放、暂停、播放和结束渲染的方法。

在这里插入图片描述

以上这些步骤提供了在Android和iOS平台上使用duix.ai SDK的基本流程。具体的实现和配置细节需要参考项目的详细文档和示例代码。

项目体验展示

接下来开源君带大家来看看,duix.ai数字人的实时驱动效果。

比如类似野蛮女友的风格

情感大师的风格

duix.ai项目提供了14个内置的数字人形象,可以直接体验数字人的魅力。

内置的模特模板和AI模型包可以通过公网地址下载,可以快速开始数字人的定制和开发。

GitHub上官方已多次更新,后续将更新上线更多数字人形象模型。

在这里插入图片描述

小结

duix.ai是一个非常有前景的开源项目,不仅提供了一个功能强大的数字人SDK,还通过完全开源的方式,鼓励和支持开发者进行创新和优化,为整个行业提供了一个创新的平台。无论是对于企业还是个人开发者来说,duix.ai都是一个值得关注和尝试的项目。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>好的,用户想了解或使用数字人相关的API接口,特别是使用说明、文档和示例。首先,我需要根据提供的引用内容,尤其是引用[2]和引用[3],来构建回答。 首先,引用[2]提到有一个免费数字人API接口,可以部署到自己的服务器,并带有平台源码。这可能是一个重要的点,用户可能对免费和可自部署的选项感兴趣。需要详细说明如何获取和部署这个API,可能包括源码的获取方式、部署步骤等。 接下来,引用[3]关于Gemini API的使用提示,特别是文件API处理大文件的部分。虽然用户主要询问数字人API,但Gemini API可能在某些情况下相关,比如处理媒体文件。需要确认是否数字人API涉及大文件上传,如果有的话,可以引用Gemini的文件API处理方法作为参考。 引用[4]提到了接口文档的结构,包括RequestVo和ResponseVo,这可能帮助用户理解如何构造请求和解析响应。需要解释这些概念,并给出示例,比如Java或Python的代码片段。 引用[5]中的Spring Boot启动类示例,可能对Java用户有用,特别是如果他们需要集成API到Spring应用中。可以提供一个简单的Spring Boot示例,展示如何调用数字人API。 然后,用户需要具体的文档和示例。由于引用[2]提到有API平台源码,可能需要指导用户如何访问该源码,查看文档,并运行示例。比如,可能需要克隆GitHub仓库,查看README,运行特定命令启动服务。 需要注意,引用[2]中的数字人API是免费的,但可能需要认证,引用[1]提到某些API需要认证,但不确定是否适用。如果有关于认证的信息,需要明确说明,比如是否需要API密钥,如何获取等。 此外,用户可能需要了解数字人API的功能,比如是否支持语音合成、图像生成、视频生成等。根据引用内容,可能无法详细得知,但可以建议用户查阅具体的API文档,或尝试提供的示例代码来测试功能。 最后,生成相关问题,帮助用户深入探索,比如性能优化、应用场景、与其他API对比等,这些都需要基于现有引用和常见问题来设计。 需要确保回答结构清晰,分步骤说明,代码示例正确,符合用户的中文要求,并且引用正确。同时,检查是否有遗漏的引用内容,比如引用[1]中的公共API列表可能不相关,但引用[2]和[3]是关键。</think>### 数字人API接口使用说明与示例 #### 1. 接口基础信息 - **功能定位**:数字人API主要用于生成虚拟形象、语音交互、动作模拟等场景,适用于智能客服、虚拟主播、教育助手等领域。 - **认证方式**:部分接口需要API密钥认证(如OAuth 2.0),但引用[2]提到的免费接口可能无需复杂认证[^2]。 #### 2. 接口调用流程 **步骤1:获取API源码与部署** ```bash # 克隆仓库(示例命令,需根据实际仓库地址调整) git clone https://github.com/xxx/digital-human-api.git cd digital-human-api # 启动服务(假设使用Java Spring Boot框架) mvn spring-boot:run ``` 部署成功后,默认访问地址为 `http://localhost:8080`[^5]。 **步骤2:接口请求格式** - **请求示例**(JSON结构): ```json { "text": "你好,我是数字人助手", "voice_type": "female_01", "animation": "wave_hand" } ``` 对应Java实体类(引用[4]的`RequestVo`): ```java public class DigitalHumanRequestVo { private String text; private String voiceType; private String animation; // getters and setters } ``` **步骤3:响应解析** - **响应示例**: ```json { "code": 200, "data": { "video_url": "http://api.example.com/output/1234.mp4", "duration": 15.2 } } ``` 对应Spring Boot统一响应封装(引用[4]的`ResultVo`): ```java public class ResultVo<T> { private int code; private T data; // 其他字段如message等 } ``` #### 3. 高级功能与注意事项 - **大文件处理**:若需上传视频或3D模型(如超过20MB),可参考Gemini API的File API临时存储方案[^3]。 - **接口调试工具**:推荐使用Postman或Swagger UI(若接口文档集成Swagger)。 #### 4. 示例代码(Python调用) ```python import requests url = "http://localhost:8080/api/digital-human/generate" headers = {"Content-Type": "application/json"} payload = { "text": "欢迎使用数字人服务", "voice_type": "male_02", "animation": "nod_head" } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: result = response.json() print("生成结果:", result["data"]["video_url"]) else: print("请求失败:", response.text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值