在数字化浪潮的推动下,人工智能技术正以前所未有的速度渗透到各行各业中, 越来越多的AI概念正在深入我的的生活。
不少公司正在开发AI伴侣应用程序,这些应用程序能够提供情感支持和陪伴,如Replika AI,它允许用户与一个AI聊天机器人建立关系,随着时间的推移,AI伴侣会学习用户的偏好和习惯。
今天开源君就来和大家分享一个非常有趣的开源项目 - duix.ai
,让开发者能够轻松创建和部署虚拟数字人。
项目地址:https://github.com/GuijiAI/duix.ai
简介
duix.ai
,全称为"Dialogue User Interface System",是一个集成了数字化虚拟人与AI技术的开源项目,由硅基智能开发的,旨在打造一个数字人智能交互平台。它通过结合最新的人工智能研究成果,为用户提供了一系列强大的功能和工具,使得虚拟人不仅能够进行智能交互,还能够在多种商业场景中得到应用。
duix.ai
允许开发者在Android和iOS等设备上一键部署,为用户提供即时的虚拟人互动体验。这个SDK不仅提供了直观的效果展示,还支持用户进行二次开发,可以根据提供的开放文档轻松开发出定制化的虚拟人应用。
duix.ai
的目标是降低技术门槛,让更多企业和开发者能够快速接入并利用AI技术,推动数字化转型。不仅代表了技术的进步,更是对未来人机交互方式的一次大胆探索。
性能特色
-
一键快速集成:无需客户提供技术团队进行配合,支持低成本快速部署在多种终端及大屏。
-
网络依赖小:无网络环境可运行。
-
可自由定制:可根据客户需求满足视频、媒体、客服、金融、广电等多个行业的多样化需求。
-
画质流程清晰:模型支持50帧/秒以上的超流畅画面质量,超电影级标准的24帧/秒。
-
突出的实时渲染能力:视频生成效率超过1:0.5(生成时长:生成耗时),达到直播/实时交互应用标准。
-
真人级的交互质量:模型对动作、微表情乃至声音唇形的精准同步,实现。
-
模型对算力要求低:无论是个人电脑、平板、车载系统,甚至是手机,都能流畅运行。
快速安装使用
Duix.ai提供了详细的文档和示例代码,帮助开发者快速上手。无论是Android还是iOS平台,Duix.ai都提供了相应的SDK和API,使得集成变得简单快捷。
Android平台上,需要支持Android 7.0至Android 13系统,硬件至少需要4核CPU和4G内存。
-
在 build.gradle 文件中添加依赖配置。
-
配置: 在AndroidManifest.xml中添加必要的权限,如INTERNET和MODIFY_AUDIO_SETTINGS等。
-
初始化: 在应用的onCreate()方法中初始化DUIX对象,并设置回调以处理SDK事件。
-
渲染: 使用RenderSink接口来接收和渲染数字人形象。
-
播报: 通过提供wav文件路径启动数字人播报功能。
iOS平台,则需要Xcode和iOS 12.0以上环境,iPhone X及以上设备。
-
安装: 通过Xcode将DUIX SDK集成到iOS项目中。
-
初始化: 使用GJLDigitalManager类初始化数字人模型,并指定显示视图。
-
渲染: 调用toStart方法开始渲染数字人。
-
播报: 使用toSpeakWithPath方法播放音频文件,驱动数字人进行播报。
-
控制: 提供了取消播放、暂停、播放和结束渲染的方法。
以上这些步骤提供了在Android和iOS平台上使用duix.ai SDK的基本流程。具体的实现和配置细节需要参考项目的详细文档和示例代码。
项目体验展示
接下来开源君带大家来看看,duix.ai数字人的实时驱动效果。
比如类似野蛮女友的风格
情感大师的风格
duix.ai项目提供了14个内置的数字人形象,可以直接体验数字人的魅力。
内置的模特模板和AI模型包可以通过公网地址下载,可以快速开始数字人的定制和开发。
GitHub上官方已多次更新,后续将更新上线更多数字人形象模型。
小结
duix.ai
是一个非常有前景的开源项目,不仅提供了一个功能强大的数字人SDK,还通过完全开源的方式,鼓励和支持开发者进行创新和优化,为整个行业提供了一个创新的平台。无论是对于企业还是个人开发者来说,duix.ai都是一个值得关注和尝试的项目。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓