2025年AI大模型自学指南:大模型从入门到精通的正确学习顺序,非常详细收藏这一篇就够了!

大模型目前在可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习大模型技术,转战AI领域,以适应未来的大趋势,寻求更有前景的发展!

2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

在这里插入图片描述

一、大模型基础篇

第一阶段基础篇:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

1、大语言模型的基本情况介绍
  • 初识大模型

  • OpenAI模型的发展历程

  • 主流国产大模型

  • 大模型赋能行业分析

  • 未来展望:大模型的趋势与挑战

2、大模型核心原理
  • 理解大模型成功的背后

  • 理解生成式模型与大语言模型

  • 大模型应用实例与Prompt使用技巧

  • Transformer架构解析

  • 关键技术解析:预训练、SFT、RLHF

  • 交互式讨论:当前大模型应用场景

3、提示工程
  • AI开发环境

  • 提示工程基础

  • 提示工程进阶

  • 实战项目:基于提示工程的前端界面代码生成实战

在这里插入图片描述

二、大模型进阶篇

第二阶段进阶篇:进阶篇是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

1、RAG
  • 检索增强生成

  • Naive RAG Pipeline

  • 实战项目:基于向量检索的RAG实现公司HR制度智能问答系统项目

2、Advanced-RAG
  • Advanced RAG前沿Paper解读

  • 商业化RAG分析与优化方案实践

3、RAG项目评估
  • RAG效果评估
4、RAG热门项目精讲
  • RAGFlow应用分析

  • FastGPT应用分析

  • QAnything应用分析

  • LangChain-chatchat应用分析

  • GraphRAG应用分析

  • 实战:基于Dify实现K12教育行业智能助教

    在这里插入图片描述

大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

5、Langchain
  • 什么是开发框架

  • 什么是langchain、它的意义是什么?

  • LangChain的核心组件

  • 实战项目:基于LangChain的企业知识库实战

6、LlamaIndex
  • LlamaIndex是什么

  • LlamaIndex的优势与劣势

  • LlamaIndex与RAG检索增强联合应用实践

  • LlamaIndex与LangChain对比分析

7、Agent
  • Agents关键技术分析

  • Funcation Calling

  • Agent认知框架

  • 实战项目:命理Agent机器人实战

  • 多Agent系统

  • 实战项目:多智能体协同代码生成应用

8、可视化框架
  • GPTS

  • Coze扣子

  • Dify

9、项目实战
  • 实战项目:公司HR制度智能问答系统商业化实战

  • 实战项目:智能电商客服系统

在这里插入图片描述

三、大模型实战篇

第三阶段实战篇:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

1、Transformer
  • Transformer结构理解

  • 理解Self-Attention

  • 理解Encoder与Decoder

  • Multi-head Attention

  • 不同Decoding方法

2、Open source(开源)
  • 私有化大模型的必要性

  • 国外开源模型生态

  • 国内开源模型生态

  • 开源模型的三种评估方式

  • 开源模型应用场景与局限性

  • 实战案例:ChatGLM大模型在Ollama上的部署

3、Fine-Tuning(微调)
  • 模型微调简介

  • 如何选择合适的基座模型

  • 数据集的收集与预处理

  • 数据集的收集与预处理

  • 微调训练框架的选择

4、PEFT fine-turning
  • PEFT 主流技术介绍

  • LoRA 低秩适配微调

  • LoRA 的改进和扩展

  • 实战案例:ChatGLM在医疗领域的LoRA微调

5、Quantlzation(量化)
  • 模型显存占用与量化技术简介

  • Transformers 原生支持的大模型量化算法

  • AWQ:激活感知权重量化算法

  • GPTQ:专为 GPT 设计的模型量化算法

  • 模型量化对比实例

  • 实战案例:ChatGLM的量化演示

6、Application Engineering(应用工程)
  • 大模型应用工程

  • 大模型AI工程平台 (MoPaaS)

  • 打造私有化模型 — 智能时代企业关键的 IP

  • 私有化大模型部署LLaMA3.1 项目实践

7、multimodal(多模态)
  • 什么是多模态模型

  • 多模态的应用场景

  • 图像生成技术概述

  • DALLE-3与Midjourney

  • Stable Diffusion与ControlNet

  • 语音生成技术概述

  • 主流TTS技术剖析

  • 案例:Video-LLaVA与多模态图像视频识别

8、微调大实战:基于LLaMA3.1-8B做医疗领域微调大实战
  • 真实的医疗数据集

  • 数据清洗技术应用

  • 开源大模型做基座

  • LoRA微调应用

  • AdaLoRA微调应用

  • LongLoRA微调应用

图片

整个大模型学习路线基础篇主要是对大模型的理论基础、核心原理以及提示词的学习掌握;而进阶实战篇更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值