Qwen 2.5 Max与DeepSeek R1测试对比

大家好,今天详细对比一下 Qwen 2.5 Max 和 DeepSeek R1 的基准测试情况。

引言

随着AI的飞速发展,各大领先语言模型之间的竞争愈发激烈。阿里的Qwen 2.5 MaxDeepSeek V3 (R1) 是这一领域中两款极为强大的人工智能模型。在本文中,我们将分析它们在不同领域的基准测试表现,包括推理、编码、常识以及实际任务等方面。

我们利用公开可用的基准测试数据来对这两款模型进行比较,并以易于理解的图表形式展示结果。

基准测试对比

为确保对比的公平性和条理性,我们在多个基准测试中对这两款模型进行评估,包括Arena - Hard、MMLU - Pro、GPQA - Diamond、LiveCodeBench 和 LiveBench

|
基准测试

|

Qwen 2.5 Max

|

DeepSeek R1

|

差值

|
| — | — | — | — |
| Arena - Hard

(偏好)

| 89.4 |

85.5

|

+3.9

|
| MMLU - Pro

(知识与推理)

| 76.1 |

75.9

|

+0.2

|
| GPQA - Diamond

(常识问答)

| 60.1 |

59.1

|

+1.0

|
| LiveCodeBench

(编码能力)

| 38.7 |

37.6

|

+1.1

|
| LiveBench

(综合能力)

| 62.2 |

60.5

|

+1.7

|

差值=Qwen 2.5 Max - DeepSeek R1

基准测试对比

表格介绍

  1. Qwen 2.5 Max 在所有基准测试中均占优势,但优势幅度相对较小,不过在Arena - Hard 中,它比 DeepSeek V3 高出 3.9 分

  2. 两款模型在知识与推理任务(MMLU - Pro,76.1 对 75.9)中的表现几乎相同

  3. 在常识查询(GPQA - Diamond)方面,Qwen 2.5 Max 领先 1 分,显示出更好的事实一致性。

  4. 编码能力(LiveCodeBench)方面,Qwen 2.5 Max 略强(38.7 对 37.6)

  5. 综合能力(LiveBench)方面,Qwen 2.5 Max 领先 1.7 分,表明它在各种任务中的通用性更好。

测试集分析

1. Arena - Hard(偏好测试)

  • 衡量AI与人类偏好的契合程度。

  • Qwen 2.5 Max 得分89.4比 DeepSeek V3 高出 3.9 分

  • 这表明Qwen 2.5 Max 在微调与指令遵循能力方面更强

2. MMLU - Pro(知识与推理)

  • Qwen 2.5 Max(76.1)和 DeepSeek V3(75.9)得分近乎相同,表明两款模型具有相似的知识和逻辑推理能力。

  • 这些结果表明DeepSeek 在传统基于知识的基准测试中已追赶上 Qwen

3. GPQA - Diamond(常识问答)

  • 衡量基于事实的问答表现。

  • Qwen 2.5 Max 领先 1 分(60.1 对 59.1),表明其事实一致性略好

  • 两款模型在此处的表现均显著低于其他类别,凸显了可靠回答长篇事实性问题的难度。

4. LiveCodeBench(编码能力)

  • 评估模型生成和执行功能性代码的能力。

  • Qwen 2.5 Max 领先 1.1 分(38.7 对 37.6)

  • 这一差异表明Qwen 在代码生成任务上的微调效果更好

5. LiveBench(综合能力)

  • 该基准测试评估模型在多个领域的能力。

  • Qwen 2.5 Max 领先 1.7 分(62.2 对 60.5),证实其通用性更强。

你该选哪款模型?

如果你的首要考虑是用户一致性和基于偏好的人工智能交互Qwen 2.5 Max 是更好的选择。如果你需要强大的通用推理和事实性知识,两款模型相近,但 Qwen 2.5 Max 稍有优势。

对于编码任务,Qwen 2.5 Max 是更好的选择。

如果预算和本地化很重要,DeepSeek V3 R1 仍是极具竞争力的开源替代方案。

总结

在本次基准测试对比中,阿里的Qwen 2.5 Max表现更为出色,在所有测试类别中均胜过DeepSeek V3 R1。然而,在大多数基准测试中优势并不明显,DeepSeek V3 仍是一个强大的替代方案,尤其对于开源AI开发者而言

随着人工智能的持续发展,这些模型之间的竞争将推动推理、事实准确性和用户一致性等方面的改进,最终使研究人员、开发者和企业共同受益。

- END -

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值