GraphRAG + Ollama 本地部署全攻略:避坑实战指南

—1—

为什么要对 GraphRAG 本地部署?

微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。

图片

—2—

GraphRAG 一键安装

第一步、安装 GraphRAG

图片

需要 Python 3.10-3.12 环境。

第二步、创建知识数据文件夹

安装完整后,需要创建一个文件夹,用来存储你的知识数据,目前 GraphRAG 只支持 txt 和 csv 格式。

图片

第三步、准备一份数据放在 /ragtest/input 目录下

图片

第四步、初始化工作区

首先,我们需要运行以下命令来初始化。

图片

其次,我们第二步已经准备了 ragtest 目录,运行以下命令完成初始化。

图片

运行完成后,在 ragtest 目录下生成以下两个文件:.envsettings.yaml。ragtest 目录下的结构如下:

图片

.env 文件包含了运行 GraphRAG 管道所需的环境变量。如果您检查该文件,您会看到一个定义的环境变量,GRAPHRAG_API_KEY=。这是 OpenAI API 或 Azure OpenAI 端点的 API 密钥。您可以用自己的 API 密钥替换它。

settings.yaml 文件包含了管道的设置。您可以修改此文件以更改管道的设置。

—3—

修改配置文件支持本地部署大模型

第一步、确保已安装 Ollama

第二步、确保已安装以下本地模型
在这里插入图片描述

第三步、修改 settings.yaml 以支持以上两个本地模型,以下是修改后的文件

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ollama  
  type: openai_chat # or azure_openai_chat  
  model: gemma2:9b # 你 ollama 中的本地 llm 模型,可以换成其他的,只要你安装了就可以  
  model_supports_json: true # recommended if this is available for your model.  
  max_tokens: 2048  
  api_base: http://localhost:11434/v1 # 接口注意是v1  
  concurrent_requests: 1 # the number of parallel inflight requests that may be made

parallelization:
  stagger: 0.3
async_mode: threaded # or asyncio

embeddings:
  async_mode: threaded # or asyncio  
  llm:  
    api_key: ollama    
    type: openai_embedding # or azure_openai_embedding    
    model: quentinz/bge-large-zh-v1.5:latest # 你 ollama 中的本地 Embeding 模型,可以换成其他的,只要你安装了就可以    
    api_base: http://localhost:11434/api # 注意是 api    
    concurrent_requests: 1 # the number of parallel inflight requests that may be made
chunks:
  size: 300  
  overlap: 100  
  group_by_columns: [id] # by default, we don't allow chunks to cross documents    

input:
  type: file # or blob  
  file_type: text # or csv  
  base_dir: "input"  
  file_encoding: utf-8 
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob  
  base_dir: "cache"

storage:
  type: file # or blob  
  base_dir: "output/${timestamp}/artifacts"

reporting:
  type: file # or console, blob  
  base_dir: "output/${timestamp}/reports"

entity_extraction:
  prompt: "prompts/entity_extraction.txt"  
  entity_types: [organization,person,geo,event]  
  max_gleanings: 0

summarize_descriptions:
  prompt: "prompts/summarize_descriptions.txt"  
  max_length: 500

claim_extraction:
  prompt: "prompts/claim_extraction.txt"  
  description: "Any claims or facts that could be relevant to information discovery."  
  max_gleanings: 0

community_report:
  prompt: "prompts/community_report.txt"  
  max_length: 2000  
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false  
  raw_entities: false  
  top_level_nodes: false

local_search:  
  max_tokens: 5000

global_search:
  max_tokens: 5000

第四步、运行 GraphRAG 构建知识图谱索引

图片

构建知识图谱的索引需要一定的时间,构建过程如下所示:

图片

—4—

修改源码支持本地部署大模型

接下来修改源码,保证进行 local 和 global 查询时给出正确的结果。

第一步、修改成本地的 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/llm/openai/openai_embeddings_llm.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,    
    EmbeddingOutput,    
    LLMInput,
)

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes
import ollama

class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""    
    
    _client: OpenAIClientTypes    
    _configuration: OpenAIConfiguration    
    
    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client        
        self.configuration = configuration    
        
    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]    
    ) -> EmbeddingOutput | None:    
        args = {      
            "model": self.configuration.model,            
            **(kwargs.get("model_parameters") or {}),        
        }        
        embedding_list = []        
        for inp in input:        
            embedding = ollama.embeddings(model="quentinz/bge-large-zh-v1.5:latest",prompt=inp)            
            embedding_list.append(embedding["embedding"])        
        return embedding_list        
        # embedding = await self.client.embeddings.create(        
        #     input=input,        
        #     **args,       
        # )        
        # return [d.embedding for d in embedding.data]

第二步、继续修改 Embedding 模型

修改源代码的目录和文件:

…/Python/Python310/site-packages/graphrag/query/llm/oai/embedding.py"

修改后的源码如下:

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,    
    RetryError,    
    Retrying,    
    retry_if_exception_type,    
    stop_after_attempt,    
    wait_exponential_jitter,
)

from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,    
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
from graphrag.query.progress import StatusReporter

from langchain_community.embeddings import OllamaEmbeddings



class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""    
    
    def __init__(    
        self,        
        api_key: str | None = None,        
        azure_ad_token_provider: Callable | None = None,        
        model: str = "text-embedding-3-small",        
        deployment_name: str | None = None,        
        api_base: str | None = None,        
        api_version: str | None = None,        
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,        
        organization: str | None = None,        
        encoding_name: str = "cl100k_base",        
        max_tokens: int = 8191,        
        max_retries: int = 10,        
        request_timeout: float = 180.0,        
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore        
        reporter: StatusReporter | None = None,    
     ):      
        OpenAILLMImpl.__init__(      
            self=self,            
            api_key=api_key,            
            azure_ad_token_provider=azure_ad_token_provider,            
            deployment_name=deployment_name,            
            api_base=api_base,            
            api_version=api_version,            
            api_type=api_type,  # type: ignore            
            organization=organization,            
            max_retries=max_retries,            
            request_timeout=request_timeout,            
            reporter=reporter,       
        )        
       
       self.model = model       
       self.encoding_name = encoding_name        
       self.max_tokens = max_tokens        
       self.token_encoder = tiktoken.get_encoding(self.encoding_name)        
       self.retry_error_types = retry_error_types    
    
   def embed(self, text: str, **kwargs: Any) -> list[float]:    
       """        
       Embed text using OpenAI Embedding's sync function.   
            
       For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.        
       Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb        
       """        
       token_chunks = chunk_text(       
           text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens        
       )        
       chunk_embeddings = []        
       chunk_lens = []        
       for chunk in token_chunks:       
           try:          
               embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)                
               chunk_embeddings.append(embedding)                
               chunk_lens.append(chunk_len)            
           # TODO: catch a more specific exception            
           except Exception as e:  # noqa BLE001            
               self._reporter.error(                
                   message="Error embedding chunk",                    
                   details={self.__class__.__name__: str(e)},                
               )              
  
               continue        
       chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)        
       chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)        
       return chunk_embeddings.tolist()    
       
   async def aembed(self, text: str, **kwargs: Any) -> list[float]:        
   """        
   Embed text using OpenAI Embedding's async function. 
          
   For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.        
   """        
   token_chunks = chunk_text(         
       text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens        
   )        
   chunk_embeddings = []        
   chunk_lens = []        
   embedding_results = await asyncio.gather(*[        
       self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks        
   ])        
   embedding_results = [result for result in embedding_results if result[0]]        
   chunk_embeddings = [result[0] for result in embedding_results]        
   chunk_lens = [result[1] for result in embedding_results]        
   chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore        
   chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)        
   return chunk_embeddings.tolist()    

def _embed_with_retry(     
    self, text: str | tuple, **kwargs: Any    
) -> tuple[list[float], int]:    
    try:         
        retryer = Retrying(           
            stop=stop_after_attempt(self.max_retries),                
            wait=wait_exponential_jitter(max=10),                
            reraise=True,                
            retry=retry_if_exception_type(self.retry_error_types),            
        )            
        for attempt in retryer:          
            with attempt:                 
                embedding = (                     
                    OllamaEmbeddings(                        
                        model=self.model,                        
                    ).embed_query(text)                        
                    or []                    
                )                    
                return (embedding, len(text))        
    except RetryError as e:        
        self._reporter.error(          
             message="Error at embed_with_retry()",                
             details={self.__class__.__name__: str(e)},           
        )            
        return ([], 0)        
    else:        
        # TODO: why not just throw in this case?            
        return ([], 0)    
        
async def _aembed_with_retry(     
    self, text: str | tuple, **kwargs: Any    
) -> tuple[list[float], int]:    
    try:       
        retryer = AsyncRetrying(            
            stop=stop_after_attempt(self.max_retries),                
            wait=wait_exponential_jitter(max=10),                
            reraise=True,                
            retry=retry_if_exception_type(self.retry_error_types),            
        )            
        async for attempt in retryer:           
            with attempt:             
                embedding = (                    
                    await OllamaEmbeddings(                        
                        model=self.model,                        
                    ).embed_query(text) or [] )                   
                return (embedding, len(text))       
    except RetryError as e:          
        self._reporter.error(           
            message="Error at embed_with_retry()",                
            details={self.__class__.__name__: str(e)},            
        )            
        return ([], 0)        
    else:           
        # TODO: why not just throw in this case?            
        return ([], 0)

—5—

GraphRAG 效果测试

第一、local 查询

图片

图片

第二、global 查询

图片

图片

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

本文转自 https://blog.csdn.net/python1234567_/article/details/141598324?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值