今天我们一起来探讨一下当下非常火热的大模型,相信不少人对于大模型是个啥还一头雾水。
接下来我们将揭开大模型的神秘面纱,聊一聊,到底啥是大模型?
“大模型”这一概念,通常是指在人工智能领域中,具有大量参数和复杂结构的机器学习模型,它们能够处理和理解大量数据,并在各种任务上表现出色。
如Chat-GPT、文心一言、通义千问、豆包、讯飞星火等等,这些都是一个一个的大模型。
一、大模型的工作原理
首先,大模型是一个由大量参数和复杂网络结构构成的机器学习模型。
这些参数和结构是通过学习大量数据中的模式和规律来确定的。
你可以把大模型想象成一个超级智能的“大脑”,这个“大脑”能够记住并理解它学习过的各种信息。
当我们给大模型输入一些新数据时,比如一段文字、一张图片或者一段语音。
大模型会利用它之前学习到的参数和结构,对这些数据进行处理和分析。
这个过程就像“大脑”在思考和理解输入的信息一样。
通过复杂的计算和推理,大模型会尝试从输入的数据中提取出有用的特征和信息,并与它之前学习到的知识进行比较和匹配。
这样,大模型就能够理解输入数据的含义,并做出相应的预测或决策。
最后,大模型会输出它的预测结果或决策。
这个结果可能是对输入数据的分类、识别、翻译等,具体取决于我们训练大模型时所设定的任务和目标。
总的来说,大模型的工作原理就是通过学习大量数据,并利用其复杂的参数和结构来理解和处理新的输入数据,从而做出相应的预测或决策。
这个过程需要强大的计算能力和存储空间来支持,但一旦训练完成,大模型就能够为我们提供准确、高效的智能服务。
二、大模型的训练和推理
如果大模型没有任何参数数据,它就无法进行推理分析。
没有参数数据的大模型就像一个空白的框架,没有具体的内容和逻辑规则来指导它的行为。
即使输入了数据,模型也无法从中提取有用的特征或进行推理,因为它没有学习到任何相关的知识或模式。
参数数据是大模型学习和理解世界的基础,它们是在训练过程中通过优化算法逐渐调整得到的。
这些参数数据定义了模型的结构和功能,使其能够对输入数据进行处理、分析和预测。
在机器学习和深度学习的背景下,参数通常是指模型中的权重和偏置,它们是模型内部的变量,用于在给定输入数据时计算输出。
这些参数是模型从训练数据中学习到的知识的体现。
2.1 大模型的训练
(1)初始化参数
模型的参数(权重和偏置)通常以随机值开始。
(2)前向传播
模型接收输入数据,并通过一系列计算(如矩阵乘法、激活函数等)产生输出。
(3)计算损失
模型的输出与实际值之间的差异通过损失函数来计算,损失函数是衡量模型性能的指标。
(4)反向传播
损失函数的结果用于计算每个参数的梯度,这个过程称为反向传播。
(5)参数更新
使用优化算法(如梯度下降)根据梯度来更新模型的参数,以减少损失。
(6)迭代过程
重复上述步骤,直到模型在训练数据上的性能达到满意的水平。
2.2 大模型的推理
大模型的推理阶段,即将训练好的大模型部署上线,供人们来使用。
(1)加载参数
加载训练阶段完成后保存的参数。
(2)输入新数据
将新的输入数据提供给模型。
(3)前向传播
使用加载的参数和新输入数据进行前向传播,得到预测结果。
(4)输出结果
模型输出的预测结果可以直接用于决策或进一步的处理。
在实际应用中,大模型的参数可能非常庞大,需要有效的存储和加载机制。
此外,为了提高推理速度和减少资源消耗,有时会对模型进行优化,如模型剪枝、量化或知识蒸馏等技术。
三、大模型的海马体
业界有一个精准的比喻:大模型是容易失忆的大脑,向量数据库就是海马体。
大模型虽然具有较强的分析推理能力,但是还存在几个问题,分别是记忆问题、幻觉问题、新鲜度问题和数据安全问题。
要想解决这四大问题,需要数据的优化与模型精调一起进行,这时候,海量的数据如何存储?如何调取?就成为一大难题。
大模型是计算引擎,改变的是计算方式,数据的存储和调取需要其他产品来做,这里就用到了向量数据库。
大模型好比是计算器,向量数据库就是账本,一个会计先拿计算器算账,再拿账本誊抄记录。
【向量数据库 + 大模型】,两者形成了最佳拍档。
向量数据库相当于大模型的外脑,大模型有上下文token的限制,虽然它擅长分析和推理,但是缺乏长期的记忆能力。
外挂向量数据库后,大模型就有了记忆,能够记住用户对话的历史内容,还能越过多轮对话进行分析推理。
大模型在预训练阶段,虽然积累了大量的知识,但是在一些细分专业领域,还远远不足。
这就可能导致大模型出现幻觉,回答出一些错误知识,或者生成一些和人类偏好不一致的内容。
外挂向量数据库后,可以将专业领域知识,灌输到向量数据库中,大模型就能够拥有各种专业知识,并去划定生成内容的范围。
大模型对数据的更新速度是有滞后的,最新产生的实时数据,大模型是没有办法及时获取到的。
但是外挂了向量数据库,大模型就连上了网,可以随时更新动态。
数据安全是大模型落地时,需要着重考虑的一点。
对企业来说,根本不可能将核心的经营数据、商业机密数据上传到大模型上。
但是通过向量数据库的方式,企业就可以完成本地化部署,大模型仅仅用来分析和推理,企业的隐私数据是私有化存储在本地的。
好了,今天的探讨就到这里,更多关于大模型的见解和讨论,欢迎评论区留言!
希望本篇文章对你有所帮助!
记得点赞、关注、收藏,【知识哨】更多精选文章,为你而来!
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
本文转自 https://mp.weixin.qq.com/s/2HvMDX7AU5uOThQd6AidIg,如有侵权,请联系删除。