用Milvus构建RAG系统,N8N VS dify 如何选?

前言

如果将大模型视为一个知识丰富但记忆有限的专家,RAG系统则是为其配备了一个能够实时检索和提供准确信息的辅助工具。

而关于如何低门槛搭建一个RAG系统系统,很多朋友可能会纠结究竟选择N8N 还是Dify。

如何用Dify+Milvus搭建一个RAG系统,可以参考我们此前发布的教程:

本文,我们则将通过N8N和Milvus这两个实用工具来带大家手把手做一个RAG应用。

*01*

*为什么我们选择N8N+Milvus组合?*

N8N和Dify,分别代表了不同的工作流搭建思路,概括来说:*N8N是通用工作流工具,**可以连接几乎任何系统,处理各种自动化任务,不仅限于AI领域;**而Dify是专注于AI应用的开发平台*****,****专为生成式AI应用定制,内置了与各种LLM模型的连接能力。

img

在本文中,我们选择N8N和Milvus的组合,*是因为N8N可以连接数百种不同的服务和API,负责多系统集成和工作流编排,Milvus提供高效向量检索,二者结合既自由又高效,便于深入理解RAG系统*

相比一体化平台,这种“从零搭建”更具学习价值,但实际应用中专业平台如Dify部署更快、功能更全。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

*02*

*部署教程*

**部署架构*****总览*****及说明****

img

*环境准备说明*

本教程不含docker和docker-compose以及Ollama安装展示,请自行按照官方手册进行配置。

docker官网:https://www.docker.com/

Milvus官网:https://milvus.io/docs/prerequisite-docker.md

N8N官网:https://n8n.io/

Ollama官网:https://ollama.com

img

*1.模型配置*

本文采用Ollama运行嵌入模型并提供服务。

**1.1*****下载并检查*****embedding*******模型***

执行以下命令下载 nomic-embed-text:latest 模型:

[root@ollama ~]# ollama pull nomic-embed-text:latest下载完成后,使用以下命令检查模型是否成功拉取:
[root@ollama ~]# ollama list |grep nomic-embed-text:latest

img

**1.2*******配置LLM大模型***

说明:本文采用OpenRouter提供的在线免费模型进行演示。若使用其他收费在线模型,请注意其计费模式。

*打开OpenRouter首页并登录*

img

*选中Models菜单*

img

*选择支持Tools的模型*

说明:为保证一定能选到支持Tools的模型,请务必增加筛选条件。根据您的需求筛选并选择合适的模型。

img

*选择并确认模型的名称*

img

*创建API-KEY*

说明:在OpenRouter中为选定的模型创建一个API密钥(API-KEY),此密钥将用于后续的API调用。

img

img

img

*2.Milvus 安装与配置*

Milvus是由Zilliz开发的全球首款开源向量数据库产品,能够处理数百万乃至数十亿级的向量数据,在GitHub上获得了3.5W星标。基于开源Milvus,Zilliz还构建了商业化向量数据库产品Zilliz Cloud,这是一款全托管的向量数据库服务,通过采用云原生设计理念,在易用性、成本效益和安全性上实现了全面提升。

*2.1 部署Milvus环境要求*

*必要条件:*

  • 软件要求:Docker、Docker Compose
  • CPU:8核
  • 内存:至少16GB
  • 硬盘:至少100GB
*2.2 下载部署文件*

执行以下命令下载Milvus独立部署所需的docker-compose.yml文件:

[root@Milvus ~]# wget https://github.com/milvus-io/milvus/releases/download/v2.5.4/milvus-standalone-docker-compose.yml -O docker-compose.yml
*2.3 启动Milvus*

使用下载的docker-compose.yml文件启动Milvus服务:

[root@Milvus ~]# docker-compose up -d检查Milvus容器是否成功启动:
[root@Milvus ~]# docker ps -a

img

*2.4 启用Attu管理面板*

说明:N8N需要指明使用的向量数据库Collection,因此需要预先创建好备用。MILVUS_URL应填写Milvus服务所在的服务器IP地址及端口。 Attu是Milvus的图形化管理界面。使用以下命令启动Attu:

docker run -d -p 8000:3000 -e MILVUS_URL=192.168.7.147:19530 registry.cn-hangzhou.aliyuncs.com/xy-zy/attu:v2.5Attu面板将运行在 服务器IP:8000 。
*2.5 登录Attu*

img

*2.6 选择数据库*

img

*2.7 创建Collection*

说明:在Attu中创建用于存储向量的Collection

img

*配置参数*

参数说明:维度(Dimension)要和嵌入模型支持的大小相匹配,否则会导致嵌入失败。 根据您的嵌入模型输出向量的维度,正确配置Collection的维度参数。

img

*索引参数选择L2*

参数说明:N8N封装的Milvus向量数据库组件默认支持的索引参数是 metric_type: L2。如果创建的Collection配置的索引参数是 COSINE,可能会导致插入失败。(关于是否支持COSINE,请关注N8N官方更新)。 在创建Collection时,将索引的度量类型(Metric Type)选择为L2。

img

*03*

*N8N 安装与初始化*

N8N是一个强大的工作流自动化工具,我们将用它来编排整个RAG系统的流程。

*1.1 使用Docker安装N8N(推荐)*

可以通过以下Docker命令安装N8N:

特殊参数说明:

  • 设置环境变量 N8N_HOST 192.168.4.48,这可能是用来指定应用监听的主机地址。
  • 设置环境变量 N8N_LISTEN_ADDRESS 0.0.0.0,表示应用程序将监听所有网络接口。
  • 镜像地址已隐藏,请前往Docker Hub进行下载。
docker run -d -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n -e N8N_SECURE_COOKIE=false -e N8N_HOST=192.168.4.48 -e N8N_LISTEN_ADDRESS=0.0.0.0 registry.cn-hangzhou.aliyuncs.com/n8n:latest安装完成后,您可以通过浏览器访问 IP地址:5678来打开N8N主页。

img

*1.2 初始化N8N账户信息*

说明首次访问N8N时,请根据提示完成账户信息的初始化设置。

img

*04*

*RAG工作流完整搭建*

说明:本工作流共分为两个阶段。第一个阶段是文本向量化,第二个阶段是聊天对话检索向量。

*第一阶段:文本向量化工作流搭建*
***步骤1:*创建工作流并配置手动触发

说明:在工作流编辑界面,点击“+”号,选择“Manual” (手动触发)作为工作流的起始节点。

img

img

***步骤2:*配置表单提交参数

说明:上传文件的类型可支持多种格式,使用(.格式, 分割的方式区分和添加)。 在手动触发节点中,配置表单参数以允许用户上传文件。

img

***步骤3:*点击测试上传文件

说明:配置完成后,可以测试文件上传功能,确保节点正常工作。

img

img

img

***步骤4:*添加Milvus组件

说明:输入“vector”关键字搜索,并选择Milvus相关的组件。

img

img

*步骤5*:配置Milvus连接与Collection

说明:在Milvus节点配置中,创建或选择已有的Milvus连接凭证,填入Milvus服务地址并选择创建好的Collection

img

img

***步骤6:*添加嵌入模型(Ollama)

说明:我们选择通过Ollama运行的本地嵌入模型

img

*添加Ollama连接凭证*

说明:如果使用Ollama服务,配置Ollama的连接凭证(如API地址)。

img

img

*选择嵌入模型*

说明:选择之前下载并配置好的嵌入模型(如 nomic-embed-text)。

img

***步骤7:*添加文档加载器

参数说明:

  • 类型选择:二进制 (Binary)
  • 模式选择:加载所有输入数据 (Load all input data)
  • 数据格式:自动选择 (Auto-select) 添加一个文档加载器节点,用于处理上传的文件数据。

img

img

***步骤8:*添加文本分割器

说明:选择适用于大部分场景的递归方式 (Recursive Character Text Splitter)。 在文档加载器之后添加文本分割器节点,将文档内容分割成小块以便进行向量化。

img

***步骤9:*开始测试文本向量化

说明:从触发节点上传一个任意PDF格式的文本即可自动完成向量存储过程。 运行整个第一阶段工作流,上传一个PDF文件进行测试。

img

***步骤10:*验证Milvus中是否嵌入成功

说明:测试完成后,检查Milvus数据库对应的Collection,确认文本向量是否已成功嵌入。

img

*第二阶段:聊天对话与向量检索工作流搭建*
***步骤1:*添加聊天触发组件

说明:在N8N中创建一个新的工作流或在现有工作流中添加一个聊天触发器(例如 “Webhook” 节点或专门的聊天机器人触发器),用于接收用户输入的问题。

img

img

***步骤2:*添加AI-Agent代理节点

说明:添加一个AI Agent或类似的逻辑处理节点,用于协调后续的LLM调用和工具使用。

img

img

*添加系统提示词*

说明:提示词中英文都可以尝试,本文使用英文提示词测试如下。 为AI Agent配置系统提示词 (System Prompt),指导其行为。例如:

You can access the vector database, and there is already relevant information about milvus in the vector database[...]

img

img

***步骤3:*添加聊天模型

说明:使用OpenRouter供应商提供的在线LLM大模型。 添加一个LLM调用节点,用于与大语言模型进行交互。

img

img

*添加API-KEY并选择模型*

说明:添加刚才在OpenRouter创建好的Key并选择支持Tools工具的模型即可。 在LLM节点中配置OpenRouter的API密钥,并选择之前确定好的、支持Tools的模型。

img

img

*添加记忆*

说明:本文采用简单记忆作为演示。 为聊天流程配置记忆功能(例如 “Simple Memory”),使得对话能够保持上下文。

img

img

*步骤4:添加工具*(向量数据库问答)

说明:采用N8N提供的向量数据库问答工具,LLM会调用此工具进行向量检索并将结果返回。(输入关键字vector进行工具搜索) 在AI Agent或LLM配置中添加一个工具 (Tool),该工具用于从向量数据库中检索信息。

img

*添加数据名称*

说明:为该工具配置一个易于识别的名称

img

*配置向量存储及嵌入模型*

说明:在此工具的配置中,指定之前设置好的Milvus向量存储(Collection)以及用于查询向量化的嵌入模型(与第一阶段一致)。

img

img

img

img

*配置LLM模型*

说明:指定该工具在内部处理或生成响应时可能需要调用的LLM模型

img

img

*步骤5:* 完成第二阶段配置

检查并确认第二阶段所有节点的配置均已正确完成

img

***步骤6:*开始测试对话

说明:通过聊天触发组件发送测试问题,检验整个RAG流程是否能够正确检索信息并给出回答

milvus的设计理念是什么?

img

img

*05*

*写在结尾*

RAG(检索增强生成)系统解决了大语言模型的三大核心痛点:

  • *知识时效性突破*:通过实时检索外部知识库,确保回答包含最新信息,解决模型训练数据截止带来的信息滞后,适用于金融、新闻、医疗等需实时数据的领域。
  • *幻觉问题缓解*:提供可验证的参考资料,显著降低模型生成不准确信息的风险,提高回答的准确性和可信度。
  • *专业领域适应*:允许访问特定领域知识库,无需昂贵微调即可回答专业问题,增强模型在垂直领域的表现。

而Milvus通过专注向量相似度搜索,支持毫秒级检索数十亿向量,可以快速定位相关知识片段,提升知识库的响应速度和准确性。其分布式架构支持水平扩展,能处理TB级数据和高并发请求,保证系统稳定。提供多种索引(如HNSW、IVF)和距离计算方法(余弦相似度、欧氏距离),便于根据场景优化检索效果。支持实时数据插入与更新,确保知识库时效性。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值