经历工业自动化行业的磨炼让我了解到的工业缺陷检测,今天就细说工业缺陷检测_混色缺陷用分割模型好检出么

归纳一:

  • 纹理缺陷: 替代原始样本纹路表现,位置、大小、形态不固定;划痕、脏污等;
  • 结构缺陷: 与目标结构有关,其位置、形态较固定,可能不存在量化的概念(错漏反);
  • 其他缺陷: 例如医学图像、一些红外热成像、超声波成像等,可能无法靠肉眼建立精准的对应关系

归纳二(站在正常样本建模的角度):

  • 纹理(一般指重复的结构,可能存在颗粒比较大的纹理)
  • 非纹理对齐: 与结构相关,但是可以做到对齐
  • 非纹理无法对齐: 与结构无关,但是很难对齐

归纳三(形态上):

  • 加法: 脏污、异物、附着
  • 减法: 残缺、划痕、破损
  • 替换: 混色、异色、杂质、混淆
  • 变形: 扭曲、尺寸、褶皱

🗻4、简单粗暴的可行性分析

需求非常多,有时甚至来不及打光验证。因此我有一套简单粗暴的可行性分析办法。主要针对业务场景来说。当然这只是粗糙的可行性分析,只能建立大致的、初步的印象。具体能不能做,还要从光学、结构复杂度、成本、运维、打开市场、推广等多个维度进行评估。

简单粗暴包括以下两个点:

  • 明显: 缺陷清晰可见,肉眼容易辨别,同时也是对光学成像提出要求;
  • 明确: 缺陷标准定义明确,没有争议,是对需求进行筛选;

基本上满足以上两点,就可以认为该case是可行的,基本可以做的。不过实际的情况是比较复杂的。仅仅靠“明显”和“明确”会把很多机会拦截在外。这种定义无可厚非,但是不够深入,给算法设限。缺陷检测,很难做到这两点的理想情况。且看下一小结数据的详细分析。

🏕️5、数据的四大难点

难分、多样性、不平衡、数据脏。把握难点,针对举措。
在这里插入图片描述

5.1 、数据难分

直接后果就是标准难定,学术一点来说就是正负样本类间差距较小,不是非黑既白的一刀切能够搞定的,很难有一个一致性的标注将正负样本分开。也就是需求标准难定,即便是人工也很难保证。标准可能还比较好定,但是执行起来较为困难。

这个放到第一点,因为它是场景和数据的固有属性,人工很难改变,这也是大家吐槽缺陷检测难做的主要原因。不管用任何手段去描述缺陷,都不能做到明显可分。比如按照面积、灰度值等绘制其直方图,中间过渡区域永远存在一定量的样本,处于灰色地带,模棱两可。不管你是多人标注也好,不管你是做量化指标也好,总很难有好的办法改变这一现状。

有人可能会说,直接给阈值进行一刀切或两刀切,阈值交给客户来定。不过我们自己本身要想明白这个事情:不管是AI,还是人工,都会检出灰色地带。该场景存在这种情况,那么说明其需求本应该能够接受灰色地带的数据分错。

标注测试集就很难做,例如甲方合同明确要给出准确率。该问题的存在,很难达到理想的指标。所以如果面临该场景,建议在统计指标上,给出明显漏、明显误等。不然会陷入“清洗数据”、“更改需求”、“重复试验”的死循环,无法解脱。

能否给出对应的量化指标,也是很大的问题,比如明显的缺陷判分很低,微弱的缺陷置信度又很高。降低客户的期望也好,让客户理解AI判定过程也好,总之就是既然想让AI代替人工,我是可以做到。

针对该场景,我们要做的是:易分样本(也就是明显缺陷和明显不是缺陷)不能出错,然后在漏检和误检的tradeoff寻求一个平衡。一般客户会有“直通率”这个概念,可以多次磨合,多次迭代,趋向用户期待。

  • 12
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值