机器学习 -- 简析KNN(k近邻算法)

一般情况下,只选择样本数据集中最相似的前k个数据,并且选择k中出现次数最多的类别作为新数据的类。

2. 算法过程

输入:有标签的样例

输出:新样例的预测标签

(1)对于给定的距离,找到预测样本的k个最近的邻居,放入到Nk(x)中

(2)在Nk(x)中依据分类规则(如投票)判断新样例的预测类型

3. 算法优缺点

优点:

(1)算法简单,理论成熟,可用于分类和回归。

(2)对异常值不敏感。

(3)可用于非线性分类。

(4)比较适用于容量较大的训练数据,容量较小的训练数据则很容易出现误分类情况。

(5)KNN算法原理是根据邻域的K个样本来确定输出类别,因此对于不同类的样本集有交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为合适。

(6)对数据类型(图片,文本,视频)不做限制

缺点:

(1)时间复杂度和空间复杂度高。(训练复杂度为0,但测试耗时,需要计算很多距离,还要相应存储,再选出最小的k个距离)

(2)训练样本不平衡,对稀有类别的预测准确率低。

(3)相比决策树模型,KNN模型可解释性不强。

三、KNN模型


k近邻模型对应一个特征空间划分。每个样例是最小的单元,对应一个类别。

要点:

(1)距离度量Distance metric

(2)k值的选择Choice of k value

(3)分类规则Classification decision rule

1. 距离度量(Distance metric)

Lp距离: xi是n维空间向量,其距离就是对应分量相减的p次方之和再开平方。

当p=2 欧几里得距离

当p=1 曼哈顿距离

当p=无穷大 切比雪夫距离

三者之间的关系

2. k值的选择(Choice of k value)

如果选择较小的k值: “学习”的近似误差减小,而“学习”的估计误差增大。噪声敏感,k值的降低意味着整个模型变得复杂,容易出现过拟合。

如果选择较大的K值: 减少学习的估计误差,但缺点是学习的近似误差会增大.K值的增大 就意味着整体的模型变得简单.

选择方法:交叉验证法

3. 分类规则(Classification decision rule)

多数投票规则

四、总结

总结一下

面试前要精心做好准备,简历上写的知识点和原理都需要准备好,项目上多想想难点和亮点,这是面试时能和别人不一样的地方。

还有就是表现出自己的谦虚好学,以及对于未来持续进阶的规划,企业招人更偏爱稳定的人。

万事开头难,但是程序员这一条路坚持几年后发展空间还是非常大的,一切重在坚持。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

为了帮助大家更好更高效的准备面试,特别整理了《前端工程师面试手册》电子稿文件。

前端面试题汇总

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值