YOLO目标检测算法轻量化改进的过程记录_yolox算法轻量化改进

本文记录了YOLOX目标检测算法的轻量化过程,通过对比不同网络结构,发现在保持相近推理速度下,CSPDarknet表现最优。作者尝试了特征金字塔的魔改,引入CBAM注意力机制,以及解耦头的设计,有效提升了mAP。此外,文章讨论了Params和FLOPs、深度可分离卷积对模型速度的影响,强调预训练权重和训练策略的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课

YOLO-IDSTD算法的核心在于对YOLO模型进行了针对性的改进,以更好地应对红外弱小目标检测中遇到的挑战。在传统的YOLO模型中,虽然一步检测法能够快速处理图像,但其特征提取网络较浅,导致对小目标的识别能力不足。YOLO-IDSTD算法通过以下几个方面的优化,解决了这一问题: 参考资源链接:[红外弱小目标检测YOLO-IDSTD算法的应用与优化](https://wenku.csdn.net/doc/33pyj1ftd5?spm=1055.2569.3001.10343) 首先,YOLO-IDSTD引入了更深层次的特征提取网络,增加了网络对小目标特征的捕捉能力。虽然深层次的网络可能会导致计算量增加,但通过轻量化技术,如深度可分离卷积(Depthwise Separable Convolution),可以有效减少计算资源的消耗,从而保持模型的实时性。 其次,算法针对红外图像的特点,优化了损失函数,使其更加适应小目标的检测。例如,通过加大小目标在损失函数中的权重,使得网络训练时更加重视这些难以检测的弱小目标,从而提高了检测的准确性。 再者,YOLO-IDSTD算法在后处理阶段引入了自适应阈值技术,可以根据不同场景动态调整检测结果的置信度阈值,这有助于减少误报和漏报,提高了算法的鲁棒性。 最后,算法还通过数据增强技术,如旋转、缩放和剪裁等,增加了训练样本的多样性,这有助于模型学习到更为泛化的特征,进一步提升了在实际应用中的检测效果。 以上这些改进使得YOLO-IDSTD算法在保持YOLO系列的快速检测优势的同时,显著提升了对红外弱小目标的检测精度,特别适合于战场态势感知和光电对抗等实时性要求极高的应用场景。 为了深入了解YOLO-IDSTD算法及其应用,推荐参阅《红外弱小目标检测YOLO-IDSTD算法的应用与优化》一书。该书详细介绍了YOLO-IDSTD算法的理论基础、优化过程和实际应用案例,提供了丰富的算法实现细节和代码实例,是帮助技术人员掌握该算法不可多得的参考资料。 参考资源链接:[红外弱小目标检测YOLO-IDSTD算法的应用与优化](https://wenku.csdn.net/doc/33pyj1ftd5?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值