🚀 快速阅读
- FunASR 是由阿里巴巴开源的语音识别工具包,支持多种功能,包括语音识别、语音活动检测、标点恢复、说话人验证等。
- FunASR 提供了预训练模型和易于使用的接口,支持快速部署,满足不同场景的应用需求。
- 本文将介绍 FunASR 的主要功能、技术原理,并提供运行示例和安装教程。
正文(附运行示例)
FunASR 是什么
FunASR 是由阿里巴巴达摩院开源的语音识别工具包,旨在帮助研究人员和开发者更高效地进行语音识别模型的研究和生产。它支持多种功能,如语音识别(ASR)、语音活动检测(VAD)、标点恢复、说话人验证和多人对话语音识别等。FunASR 提供了便捷的脚本和教程,支持预训练模型的推理与微调,使用户能够快速部署语音识别服务。
FunASR 的主要功能
- 语音识别(ASR):将语音信号转换为文本信息。
- 语音活动检测(VAD):识别语音信号中的有效语音部分,过滤掉静音或背景噪音。
- 标点恢复:在语音识别结果中自动添加标点符号,提高文本的可读性。
- 说话人验证:识别并验证说话人的身份。
- 说话人分离:在多人对话中区分不同说话人的声音。
- 多说话人 ASR:处理多人同时说话的场景,识别和区分每个人的语音。
如何运行 FunASR
安装教程
确保已安装以下依赖环境:
python>=3.8
torch>=1.13
torchaudio
使用 pip 安装:
pip3 install -U funasr
或者从源代码安装:
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip3 install -e ./
如果需要使用工业预训练模型,安装 modelscope 与 huggingface_hub(可选):
pip3 install -U modelscope huggingface huggingface_hub
运行示例
非实时语音识别
使用 Paraformer 模型进行语音识别:
from funasr import AutoModel
model = AutoModel(model="paraformer-zh", vad_model="fsmn-vad", punc_model="ct-punc")
res = model.generate(input=f"{model.model_path}/example/asr_example.wav", batch_size_s=300, hotword='魔搭')
print(res)
实时语音识别
使用 Paraformer 模型进行实时语音识别:
from funasr import AutoModel
chunk_size = [0, 10, 5] # 600ms
encoder_chunk_look_back = 4
decoder_chunk_look_back = 1
model = AutoModel(model="paraformer-zh-streaming")
import soundfile
import os
wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = chunk_size[1] * 960 # 600ms
cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
is_final = i == total_chunk_num - 1
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
print(res)
语音端点检测(VAD)示例
使用 fsmn-vad
模型进行语音端点检测:
from funasr import AutoModel
model = AutoModel(model="fsmn-vad")
wav_file = f"{model.model_path}/example/vad_example.wav"
res = model.generate(input=wav_file)
print(res)
VAD 模型将返回音频中有效语音段的起始和结束时间,格式如下:
[[beg1, end1], [beg2, end2], ..., [begN, endN]]
其中 begN
和 endN
以毫秒为单位。
标点恢复示例
使用 ct-punc
模型进行标点恢复:
from funasr import AutoModel
model = AutoModel(model="ct-punc")
res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
print(res)
该模型会自动在转录文本中添加合适的标点符号,提升文本的可读性。
时间戳预测示例
使用 fa-zh
模型进行时间戳预测:
from funasr import AutoModel
model = AutoModel(model="fa-zh")
wav_file = f"{model.model_path}/example/asr_example.wav"
text_file = f"{model.model_path}/example/text.txt"
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
print(res)
该模型将为输入的音频和文本生成时间戳信息。
情感识别示例
使用 emotion2vec_plus_large
模型进行情感识别:
from funasr import AutoModel
model = AutoModel(model="emotion2vec_plus_large")
wav_file = f"{model.model_path}/example/test.wav"
res = model.generate(wav_file, output_dir="./outputs", granularity="utterance", extract_embedding=False)
print(res)
该模型将返回音频中情感类别的预测结果,如 “生气/angry”,“开心/happy”,“中立/neutral”,“难过/sad”。
资源
- 项目官网:funasr.com
- GitHub 仓库:github.com/modelscope/…
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓