如何用Java构建高效的大模型应用,一探究竟!

😀由于Python拥有大量的深度学习框架,当前许多大型模型应用和开发框架都是使用Python编程语言实现的。我主要从事Java开发,虽然对Python有些了解,但不多。因此,我很好奇Java是否能像Python一样加载模型并进行开发。经过实际调研,发现这的确可行。
最近,大型模型应用非常火爆,各大公司都在积极推进。有时候,在开发应用时,需要使用大模型或其他AIGC技术,常常需要调用Python服务提供的接口。但是,有些时候,可能功能比较简单轻量,再新建一个Python服务提供接口调用感觉有些过于复杂。因此,我想尝试在Java中实现一些简单的AIGC技术场景。
在这里插入图片描述

前期调研

调研了三个可以在Java中运行深度学习模型的工具,有OpenNLP、ONNXRunTime以及Deeplearning4j。以下是三个工具各自的优缺点:

OpenNLP

简介:
Apache OpenNLP是一个基于机器学习的Java库,用于处理自然语言处理(NLP)任务。它提供了多种NLP工具,包括分词、词性标注、命名实体识别、句法解析等。

优点:

  1. 丰富的功能集:支持多种NLP任务,如分词、词性标注、命名实体识别、句法解析等。
  2. 简单易用:API设计简洁,易于集成到现有的Java项目中。
  3. 可扩展性强:支持用户自定义训练模型,以适应特定需求。
  4. 社区支持:作为Apache基金会的一部分,有良好的文档和社区支持。

缺点:

  1. 性能有限:由于是基于Java实现,某些复杂任务的性能可能不如C++或其他低级语言实现的库。
  2. 模型质量依赖数据:预训练模型的质量取决于训练数据,对于某些特定领域可能需要大量的标注数据来训练高质量模型。
  3. 较少的深度学习支持:主要基于传统的机器学习方法,深度学习支持有限。
ONNX (Open Neural Network Exchange)

简介:
ONNX是一个开放的深度学习模型交换格式,旨在促进不同深度学习框架之间的互操作性。ONNX支持模型的定义和转换,使模型可以在多个框架中运行。

优点:

  1. 框架互操作性:支持从多种深度学习框架(如PyTorch、TensorFlow、Caffe等)导入和导出模型,促进跨框架使用。
  2. 广泛支持:有很多深度学习框架和工具支持ONNX,包括ONNX Runtime,它可以在多个平台上高效运行ONNX模型。
  3. 性能优化:ONNX Runtime通过硬件加速和优化提供高性能推理。

缺点:

  1. 模型转换问题:不同框架间的模型转换可能遇到兼容性问题,需要额外的调试和优化。
  2. 学习曲线:对初学者来说,了解和使用ONNX及其相关工具可能有一定的学习曲线。
  3. 依赖框架更新:框架支持和模型转换工具需要不断更新以跟上深度学习框架的最新版本。
Deeplearning4j

简介:
Deeplearning4j(DL4J)是一个开源的、基于Java和Scala的深度学习框架。它支持分布式训练和GPU加速,适用于大规模的深度学习任务。

优点:

  1. Java生态系统:与Java和Scala生态系统无缝集成,适合需要在JVM上运行深度学习任务的用户。
  2. 分布式训练:支持在Hadoop和Spark等分布式系统上进行大规模训练。
  3. GPU加速:支持CUDA和其他GPU加速,提升模型训练和推理的性能。
  4. 广泛的工具集:包括ND4J(数值计算库)、DataVec(数据预处理库)、Arbiter(超参数优化工具)等。

缺点:

  1. 相对较少的社区支持:相比TensorFlow和PyTorch等流行框架,DL4J的社区和生态系统相对较小。
  2. 复杂性:对于简单的深度学习任务,DL4J的配置和使用可能显得较为复杂。
  3. 文档和教程:尽管有官方文档,但与更主流的框架相比,文档和教程的丰富度和质量还有提升空间。
总结

研究了这三个工具的官方文档,发现OpenNLP这个框架更满足我的需求,而且OpenNLP框架底层在加载深度学习模型时,也是借助了ONNX的能力。Deeplearning4j框架更适合自己使用Java手撕一些经典的深度学习模型,对于当前大模型的支持较弱。

开发&&成果

由于我的使用场景下只有CPU资源,因此为了推理速度,我在huggingface上选择了一个量化的词嵌入(Embedding模型)-nomic-ai/nomic-embed-text-v1,量化后的模型大小只有138M,实测使用AMD的5600GCPU进行推理毫无压力。

代码开发比较简单,核心的部分代码实现如下:

    public double calDistance(String strA, String strB, Integer vecDistanceType) throws OrtException {
        if (strA == null || strB == null) {
            throw new IllegalArgumentException("The input parameter cannot be NULL");
        }
        File modelFile = new File('下载的词嵌入模型')
        File vocabFile = new File('下载的模型对应的词汇索引')
        
        documentVecDL = new SentenceVectorsDL(entity.getModelFile(), entity.getVocabFile());

        float[] vecA = documentVecDL.getVectors(strA);
        float[] vecB = documentVecDL.getVectors(strB);

        VecDistanceEnum distanceType = VecDistanceEnum.fromType(vecDistanceType);

        return distanceType.calculate(vecA, vecB);
    }

完整代码已开源至GitHub,大家觉得有用的话欢迎给个Star。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值