在DeepSeek大模型爆火了后,下一个爆发的点就是基于大模型做的各种工具和应用。
因为DeepSeek性能够强且价格便宜,所以基于DeepSeek能做出很多的应用来。
比如AI编程集成DeepSeek做应用开发,比如智能体集成DeepSeek设计各种智能体应用。在智能体中去调用DeepSeek后,完全不需要本地部署了。
AI编程大家可能觉得门槛比较高,但智能体是每个人都可以学会的。
智能体其实就是一个工作流,比如你用AI绘图,手动的流程是用DeepSeek产生提示词,然后去AI绘图工具上输入提示词产生图片。一个智能体就是把这些手动流程形成一个工作流。
今天主要讲智能体中如何做插件接入DeepSeek大模型。接入后,我做了一个deepseek的聊天界面。
我用硅基流动的api来做演示,DeepSeek官网和豆包火山引擎的api也可以用。想要这2个平台代码的加我v。
其中字节的火山引擎刚上线deepseek大模型,赠送不少的token
01
申请硅基流动api
在硅基上申请API密钥,网址:https://cloud.siliconflow.cn/
然后进行充值
硅基上有一个Pro/deepseek-ai/DeepSeek-R1的模型,这个模型是专门给付费用户使用的。注意:赠送的余额不算,必须得自己充值
02
智能体做插件
在coze平台上,资源库中新建插件
配置如下,选择用python语言集成。
点击创建工具
在依赖包中安装openai和requests库
点击创建工具,首先在元数据中定义输入和输出参数。这里用到的输入参数分别是api_key和query。query就表示要输入的问题
输出参数定义一个output就可以了。下面就是代码部分,基于硅基流动的API调用方法
"""```Each file needs to export a function named `handler`. This function is the entrance to the Tool.`````Parameters:``args: parameters of the entry function.``args.input - input parameters, you can get test input value by args.input.xxx.``args.logger - logger instance used to print logs, injected by runtime.`` ``Remember to fill in input/output in Metadata, it helps LLM to recognize and use tool.`` ``Return:``The return data of the function, which should match the declared output parameters.``"""``def handler(args: Args[Input])->Output:` `content=args.input.query` `api_key=args.input.api_key` `url = "https://api.siliconflow.cn/v1/chat/completions"` `headers = {` `"Authorization": "Bearer "+str(api_key),` `"Content-Type": "application/json"``}`` ` `payload = {"model": "Pro/deepseek-ai/DeepSeek-R1",` `"messages": [` `{` `"content": content,` `"role": "user"` `}` `]` `}` `response = requests.request("POST", url, json=payload, headers=headers)` `output=response.json()['choices'][0]['message']['content']` `return {"output": output}
代码完成后,开始测试代码,点击自动生成,coze会生成输入参数格式,填入正确的参数,点击运行就可以验证插件是否运行正常了。
测试没问题,点击发布。在资源库中就能看到对应的插件了。
我再coze上设计了一个简单的网页聊天界面,输入你的api_key以及需要查询的内容。右边对话框中就会得到deepseek的输出。
工作流也非常简单,对接一个插件就可以了
智能体并不难,小白都可以学会,想了解智能体的可以看下我的这个小册。
写在最后
DeepSeek API + 智能体平台,你就可以利用DeepSeek做各种各样的应用设计。这才是利用DeepSeek搞钱的正确姿势
我做了三种平台的插件,硅基流动,火山引擎,DeepSeek官网的。三种平台的调用方式有差异,插件的代码也有差异。想了解的小伙伴可以加我v,拉你进deepseek的交流群,分享各种deepseek在应用端的玩法。
DeepSeek带来的AI风暴,马上就会进入下半场,下半场必然是AI工具和AI应用。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓