DeepSeek + Ollama + AnythingLLM助你轻松构建本地化知识库,非常详细收藏我这一篇就够了!

安装配置步骤:

一、安装Ollama

二、下载DeepSeek模型

三、安装AnythingLLM并配置

(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)
在这里插入图片描述

一、安装Ollama

1. Ollama简介

  Ollama 是一个开源项目,旨在简化和优化使用大型语言模型(LLM)的体验。它为开发者提供了一个用户友好的界面和工具,使他们能够快速地下载、运行和与各种预训练的模型进行交互。Ollama 的核心目标是降低使用复杂大型语言模型的门槛,无论是用于个人项目、研究还是产品开发。它相当于一个“本地版ChatGPT”,但完全离线、可定制,且支持私有化部署。

Ollama 提供的功能包括但不限于:

  1. 模型管理:用户可以方便地搜索、下载和管理多种语言模型。

  2. 命令行接口:提供简单的命令行工具,使得与模型的交互更加高效。

  3. 集成支持:Ollama 可以与其他开发工具和框架进行集成,方便在不同的应用场景下使用语言模型。

  4. 可扩展性:用户能够根据自己的需求定制和扩展模型的功能。

在当今自然语言处理的快速发展中,Ollama 为开发者提供了一种简化的解决方案,使他们能够快速采用和实施先进的语言学习技术。

2. 下载安装

Ollama下载地址:https://ollama.com

打开网址,进入下载页面,如下:

点击“Download”,进入选择页面,选择合适的版本

或者直接拷贝完整下载路径:

https://github.com/ollama/ollama/releases/latest/download/OllamaSetup.exe

用其他下载软件(如:迅雷)进行下载。

下载完后,点击“OllamaSetup.exe”安装。

安装完后,cmd进入命令提示符系统或Powershell,输入命令:ollama -h. 显示如下信息,说明安装成功。

3. 几个Ollama常用的命令:

1、列出本地可用的模型列表:ollama list

2、拉取模型:ollama pull model_name

3、启动模型:ollama run model_name

4、查看模型信息:ollama show model_name

5、删除指定模型:ollama rm model_name

二、下载DeepSeek模型

在浏览器中打开ollama的模型仓库网页:

https://ollama.com/library

根据需要和硬件配置条件,选择合适的模型大小版本,

如:deepseek-r1:1.5b

复制右上角的命令文本:ollama run deepseek-r1:1.5b

通过cmd或Powershell打开命令提示符系统界面,将命令文本输入命令提示符界面。按回车,Ollama开始下载模型文件:

下载完成后,显示如下:

此时,可输入你需要提问的问题。

关闭命令提示符系统后,再次输入命令:ollama run deepseek-r1:1.5b 可以重新打开Ollama。

三、安装AnythingLLM并配置

1. AnythingLLM简介

 **AnythingLLM** 是一个开源的AI聊天系统,旨在帮助用户构建个性化的私人ChatGPT。它支持多种文档格式,并具备以下核心功能:

  • 智能聊天:自动处理文档的上下文分析和内容整理,确保文件间的上下文不会混淆。

  • 自定义AI代理:允许用户为每个工作区创建不同的AI代理,如专门处理Python代码或PDF文档的代理。

  • 多模式支持:兼容免费的开源模型和需要付费的商用模型,提供极大的灵活性。

  • 团队协作:支持通过Docker容器多用户同时使用,适合团队开发或公司内部使用。

  • 丰富的API接口:允许开发者轻松集成AnythingLLM到现有应用中,如构建企业内部知识库或自定义客服。

此外,AnythingLLM的安装和使用过程简单,支持Docker部署,使得用户可以快速搭建私人ChatGPT系统。

日常工作中,我们经常需要处理大量文档和资料:

  • 产品文档、技术文档散落在各处,查找费时费力

  • 新人入职培训需要反复讲解相同的内容

  • 客户咨询的问题高度重复,但每次都要人工回答

  • 公司内部知识难以沉淀和复用

  • 各类参考资料缺乏统一管理和快速检索的方案

传统的文档管理系统只能按目录存储和搜索关键词,而商业AI助手又无法导入私有数据。这时,一个能将文档智能化并支持对话的系统就显得尤为重要。AnythingLLM正是为解决这些痛点而生。

AnythingLLM支持处理多种类型的文档和内容:

  • 多格式支持:可以导入PDF、Word、TXT等常见文档格式

  • 网页抓取:直接输入URL即可抓取网页内容

  • 智能分割:自动将长文档分割成适合向量化的片段

  • 元数据提取:自动提取文档的标题、作者等信息

  • 增量更新:支持文档的增量更新,无需重新处理全部内容

  • 大规模处理:能高效处理GB级别的文档集合

这种灵活的文档处理能力让你可以轻松将各类知识资料导入系统,构建起完整的知识库。

2. 下载安装

打开官网地址:https://anythingllm.com/desktop,根据自己的系统选择下载的版本。

安装过程中,如弹窗提示错误信息:

Error:Failed to download the local LLM libraries,可忽略

3. AnythingLLM配置

下载安装后,打开AnythingLLM软件界面,显示如下:

点击“Get started”.

选择Ollama,AnythingLLM会自动检测本地部署的模型.

点击右侧下一步箭头:“>”

创建自定义工作区,输入工作区的名称。

点击配置按钮,如下图所示:

在“人工智能提供商->LLM首选项”页面,配置为Ollama, 模型选择deepseek-r1:1.5b.

选中工作区,可以上传本地知识库文档,或对工作区进行单独配置。如下所示:

上传知识库文档界面

选中文档,点击“Move to Workspace”按钮,将文档移动到工作区

保存并嵌入,对文档进行切分和词向量化

完成后,点击图钉按钮,将这篇文档设置为当前对话的背景文档。

配置好后,即可输入问题,进行交互。

(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用 DeepSeekOllamaAnythingLLM 构建本地知识库 #### 准备工作 为了成功构建包含 DeepSeekOllamaAnythingLLM本地知识库,需先确认环境配置满足最低硬件需求,并完成必要的软件安装。 - **操作系统支持**:Linux, macOS 或 Windows (建议使用 WSL2)[^1]。 - **依赖项准备**:Python 3.x 版本及其开发工具链;Docker 及 Docker Compose 安装完毕并能正常运行[^2]。 #### 配置与部署 ##### 获取所需资源 通过命令行拉取最新版本的 Ollama 模型文件至本地存储: ```bash ollama pull bge-m3 ``` 此操作会下载指定的大规模预训练语言模型及相关组件,确保后续处理流程顺利进行。 ##### 初始化项目结构 创建一个新的目录用于存放整个项目的源码以及相关配置文件。在此基础上初始化 Git 仓库以便于版本控制管理。 ```bash mkdir my_local_knowledge_base && cd $_ git init . ``` ##### 设置 DeepSeek 环境变量 编辑 `.env` 文件加入如下内容以适应特定场景下的参数调整(如 API 密钥、端口映射等)。这一步骤对于保障系统的稳定性和安全性至关重要。 ```plaintext DEEPSEEK_API_KEY=your_api_key_here PORT=8080 DEBUG=True ``` ##### 整合 AnythingLLM 平台 利用 AnythingLLM 提供的功能接口快速对接各类外部数据源,包括但不限于静态 HTML 页面、PDF 文档集或是关系型数据库表单记录。具体实现方式可参照官方文档说明中的 Python SDK 应用实例。 ```python from anythingllm import DocumentLoader, KnowledgeBaseBuilder loader = DocumentLoader(source="path/to/your/documents") builder = KnowledgeBaseBuilder(loader) knowledge_base = builder.build() ``` #### 启动服务 一切就绪之后,在终端执行启动脚本来激活全部微服务单元,使之协同运作形成完整的解决方案栈。 ```bash docker-compose up -d --build ``` 此时访问 `http://localhost:8080` 即可见证由 DeepSeek 加持的人工智能驱动的知识检索界面雏形初现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值