大模型探秘:参数详解、训练必要性及训练过程全解析!非常详细收藏这一篇就够了!

大模型的本质是机器学习,机器学习的本质就是一种数学模型。

我们经常能听到这样的说法,某某大模型有多少参数,某某大模型参数量又提升了,这里所说的参数到底是什么?

我们知道大模型是训练出来的,那么哪些训练数据都跑哪去了,大模型训练的过程中都干了什么? 为什么大模型需要训练?‍‍

01

大模型的参数到底是什么?

我们知道大模型的发展从刚开始的几百个参数,到现在的上千亿个参数,比如GPT-3就有一千七百多亿个参数。

而随着参数数量的提升,大模型的功能也变得越来越强大,特别是现在GPT-4o的出现,大模型已经可以和人类进行正常的语音和视频交流。‍‍‍‍‍‍‍‍‍

但很多人都不知道这个参数到底是个什么东西?‍‍‍‍‍‍‍‍‍

首先,我们要明白一件事,不要把训练数据当作参数;训练数据是训练数据,参数是参数。‍‍‍‍‍‍‍‍

大模型是基于机器学习模型,通过大量数据训练出来的模型,所以叫做大模型。‍‍‍‍‍‍‍‍

而现在主流的大模型都是基于神经网络模型构建的模型,不论是基于卷积神经网络(CNN),还是循环神经网络(RNN),亦或者是Transformer神经网络等。‍‍‍‍‍‍‍‍

但神经网络模型只是机器学习模型中的一个分类,其它还包括支持向量机,决策树,回归模型等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而这里说的大模型的参数,是基于神经网络模型而构建的参数。我们知道,神经网络模型有很多层,每一层都有很多个神经元,而每一层又需要进行连接;

这就是大模型参数的由来,比如权重与偏置,就是每个神经元都有的参数。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

一般情况下,大模型的参数是在网络架构时就设定好的,参数数量一般不会发生变化;但也有例外情况,比如动态神经网络就会对参数数量进行动态调整。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

02

大模型训练的具体过程?‍‍‍‍‍

我们都知道,训练大模型需要准备大量的数据,然后对模型进行训练。那么这个训练的过程到底是干了什么,哪些训练数据的作用是什么?‍‍‍‍‍‍‍‍

其实说白了,大模型训练的本质就是调整参数。

在前面我们说了,大模型有很多个参数,现在的大模型基本上参数都是以亿为单位;当然,参数的数量根据大模型的架构而有所不同。‍‍‍

训练的过程其实就是把训练数据输入到大模型中,然后模型根据这些数据对参数进行调整的过程,以求达到一个最优解。

如果把神经网络看作一个黑盒,那么我们输入数据,经过神经网络这个黑盒处理之后,再输出我们的数据。

如下图所示,就是一个简单的神经网络模型图:

神经网络单层模型

类似于人体有无数个神经元组成,而从数学理论来说,更多的神经元与更复杂的神经网络架构,就能够进行更加复杂的数据处理。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

所以,就有了多层的神经网络架构,如下图所示,神经网络由多个神经层组成。如GPT-3就有96层。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

多层神经网络

这就是神经网络的模型架构。‍‍‍‍‍‍‍

训练开始时,需要把训练数据输入到模型中,具体的输入方式这里暂不讨论,我们只需要知道训练数据需要输入到神经网络中即可。‍‍‍‍‍‍‍

因为模型有多个神经层,所以训练数据从输入层进入大模型之后;需要在模型的多个神经层之间进行流转,而这个过程术语叫做正向传播。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

数据从输入层,一层一层的传播到输出层,然后输出结果;但由于大模型刚开始就像一个小学生,所以它输出的结果往往不尽人意。‍‍‍‍‍‍‍‍

所以,为了解决这个问题,大模型的输出结果需要跟实际结果进行匹配,术语叫做计算损失差,损失差越大说明输出结果越差。‍‍‍‍‍‍‍‍‍‍‍‍‍

而有了损失差,说明当前的模型是有问题的;所以就需要对模型进行调整,这就是所谓的反向传播。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

意思就是,模型把输出的结果再次输入到模型中,然后模型根据这个结果,使用某种算法对模型中的参数进行调整,比如不同神经元的权重等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而调整参数的这个东西叫做优化器。

模型训练流程

然后,模型根据这个原理,使用训练数据一次一次的输入,然后一次一次的对参数进行调整。最后达到一个最优解,也就是训练好的大模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这也是为什么大模型要经过很多轮的训练,才能达到比较满意的效果。‍‍‍‍‍‍‍‍‍‍‍

当然,大模型的神经层并不是越多越好,训练数据也不是越多越好,有时候更多的参数和训练数据训练出来的结果,可能还没有少一点的效果好。‍‍‍‍‍‍‍‍‍‍‍‍

而这也有专门的评估函数对训练结果进行评估。‍

以上就是大模型训练的原理。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值