从零到精通:2025年入门大模型学习资源推荐

⬇️资源覆盖从入门到进阶的LLM学习需求,适合学生、开发者及研究者。入门推荐Karpathy和吴恩达的课程,易懂且系统;复习推荐Hinton、Kiela及清华大学课程,深入且具启发性。通过理论学习与实践结合,可全面掌握大模型的核心知识与应用技能。

1. 大学课程

斯坦福大学
  • CS25: Transformers United V5 (2025)

image

image

  • 内容:探讨Transformer最新突破,邀请Google DeepMind的Denny Zhou、OpenAI的Karina Nguyen、Hongyu Ren及Meta的Andrew Brown等讲者。

  • 形式:免费开放,现场旁听或Zoom直播(每周二太平洋夏令时间15:00-16:20,北京时间周三06:00-07:20),视频上传至YouTube。

  • 资源:https://web.stanford.edu/class/cs25/, 第一期视频:https://www.youtube.com/watch?v=JKbtWimlzAE

  • 评价:前沿性强,适合跟踪最新研究动态,适合中高级学习者。

  • CS25: Transformers United (往期)

    • 评价:内容深入,适合中高级学习者复习LLM理论。

    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg

    • 评价:★★★★☆,复习RAG的绝佳资源,适合有基础的学习者。

    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

    • 评价:★★★★★,入门必看,简洁清晰,适合初学者快速掌握Transformer核心。

    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ

    • 评价:★★★★☆,适合复习Transformer理论局限及视觉领域扩展。

    • V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies:提出GLOM模型,增强Transformer视觉任务表现,探讨自注意力机制瓶颈。

    • V2 - Andrej Karpathy: Introduction to Transformers:系统讲解自注意力、多头注意力及Vision Transformer。

    • V3 - Douwe Kiela: Retrieval Augmented Language Models:深入RAG技术,分析其解决幻觉和时效性问题的潜力。

    • V4 - Jason Wei & Hyung Won Chung:探讨LLM直观理解、扩展律及Transformer多模态潜力。

  • CS224N: Natural Language Processing with Deep Learning

    • 内容:全面NLP课程,覆盖深度学习技术及LLM。

    • 链接:https://web.stanford.edu/class/cs224n/

    • 评价:系统性强,适合中高级学习者深入学习NLP。

  • CS324: Large Language Models

    • 内容:LLM进阶研究。

    • 链接:https://stanford-cs324.github.io/winter2022/

    • 评价:适合研究导向的学习者,内容偏学术。

卡内基梅隆大学
  • 11-711 ANLP: Advanced Natural Language Processing

image

image

  • 内容:涵盖语言模型、序列建模、Transformer、提示与微调,提供课件下载。

  • 链接:https://phontron.com/class/anlp2024/lectures/

  • 评价:内容全面,适合中高级学习者复习NLP核心技术。

其他大学
  • 普林斯顿 COS 597G (2022): Understanding Large Language Models

    • 链接:https://www.cs.princeton.edu/courses/archive/fall22/cos597G/

    • 评价:理论性强,适合学术研究者。

  • 约翰霍普金斯 CS 601.471/671: NLP: Self-supervised Models

    • 链接:https://self-supervised.cs.jhu.edu/sp2023/index.html

    • 评价:专注自监督学习,适合中高级学习者。

  • 滑铁卢大学 CS 886: Recent Advances on Foundation Models

    • 链接:https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/

    • 评价:聚焦前沿基础模型,适合研究者。

  • 台湾大学 Introduction to Generative AI (2024)

    • 讲者:李宏毅

    • 链接:https://speech.ee.ntu.edu.tw/~hylee/genai/2024 spring.php

    • 评价:内容生动,适合中级学习者了解生成式AI。

  • 密歇根大学 LLMs and Transformers (2024)

    • 链接:https://www.ambujtewari.com/LLM-fall2024/

    • 评价:学术与实践结合,适合中高级学习者。

2. 在线课程与教程

DeepLearning.AI
  • Generative AI for Everyone (吴恩达)

    • 内容:生成式AI入门,介绍大模型概念与应用。

    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/

    • 评价:★★★★☆,入门必看,通俗易懂,适合零基础学习者。

  • LLM Series (吴恩达)

    • 内容:全面LLM培训。

    • 链接:https://learn.deeplearning.ai/

    • 评价:内容丰富,适合中级学习者。

  • Getting Started with Mistral

    • 链接:https://www.deeplearning.ai/short-courses/getting-started-with-mistral/

    • 评价:实践性强,适合Mistral模型开发者。

  • Knowledge Graphs for RAG

    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/

    • 评价:★★★★☆,复习RAG进阶应用的优质资源。

  • Multimodal RAG: Chat with Videos

image

image

  • 链接:https://www.deeplearning.ai/short-courses/multimodal-rag-chat-with-videos/

  • 评价:聚焦多模态RAG,适合中高级开发者。

OpenAI
  • OpenAI Academy

image

image

  • 内容:免费AI课程与社区,提供《提示词大师课》等,包含实时互动活动(仅英文)。

  • 链接:https://academy.openai.com/public/events

  • 评价:社区驱动,适合实践者与同行交流。

  • OpenAI Cookbook

    • 内容:OpenAI API使用示例。

    • 链接:https://github.com/openai/openai-cookbook

    • 评价:实用性强,适合API开发者。

Hugging Face
  • NLP Course

    • 内容:Transformer在NLP中的应用,包含代码示例。

    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1

    • 评价:★★★★☆,入门必看,实践性强,适合有编程基础的初学者。

  • AI Agents Course

    • 链接:https://github.com/huggingface/agents-course

    • 评价:适合开发AI代理的实践者。

  • Hugging Face Learn

    • 链接:https://huggingface.co/learn

    • 评价:资源丰富,适合各阶段学习者。

微软
  • Generative AI for Beginners

    • 链接:https://github.com/microsoft/generative-ai-for-beginners

    • 评价:适合初学者,内容简洁。

  • State of GPT

    • 链接:https://www.youtube.com/watch?v=bZQun8Y4L2A

    • 评价:GPT技术概览,适合快速了解。

其他
  • Coursera: Prompt Engineering for ChatGPT

    • 链接:https://www.coursera.org/learn/prompt-engineering

    • 评价:提示工程入门,适合实践者。

  • Cohere LLM University

    • 链接:https://cohere.com/llmu

    • 评价:聚焦嵌入技术,适合开发者。

  • Weights & Biases AI Academy

    • 链接:https://www.wandb.courses/pages/w-b-courses

    • 评价:涵盖微调与LLMOps,适合中高级开发者。

  • Comet: LLM Evaluation

    • 链接:https://www.comet.com/site/llm-course/

    • 评价:LLM评估的系统课程,适合研究者。

  • Anthropic: Prompt Engineering Interactive Tutorial

    • 链接:https://github.com/anthropics/courses

    • 评价:交互式学习,适合提示工程实践。

  • Google: Generative AI for Developers

    • 链接:https://www.cloudskillsboost.google/paths/183

    • 评价:进阶开发者课程,内容深入。

3. 开源资源与教程

  • Andrej Karpathy

    • 链接:https://www.youtube.com/watch?v=7xTGNNLPyMI

    • 评价:内容全面,适合复习。

    • 链接:https://github.com/karpathy/LLM101n

    • 评价:适合中级开发者。

    • 链接:https://github.com/karpathy/build-nanogpt

    • 评价:实践性强,适合动手学习。

    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

    • 评价:★★★★★,入门与复习必看,理论实践兼备。

    • Neural Networks: Zero to Hero:神经网络与LLM系列。

    • Build nanoGPT:从头构建GPT模型。

    • LLM101n: Let’s Build a Storyteller:LLM开发实践。

    • Deep Dive into LLMs like ChatGPT:LLM深入讲解。

  • Mistral AI Cookbook:Mistral模型使用指南。

    • 链接:https://github.com/mistralai/cookbook

    • 评价:适合Mistral开发者。

  • LangGPT:提示工程学习。

    • 链接:https://github.com/langgptai/LangGPT

    • 评价:提示工程实践资源。

  • **LLMs From Scratch (Datawhale)**:从零构建LLM。

    • 链接:https://github.com/datawhalechina/llms-from-scratch-cn

    • 评价:适合中文学习者实践。

  • Hands-on LLMs:金融顾问LLM开发。

    • 链接:https://github.com/iusztinpaul/hands-on-llms

    • 评价:应用驱动,适合开发者。

  • LLM Interview Notes:LLM面试技术准备。

    • 链接:https://github.com/wdndev/llm_interview_note

    • 评价:适合求职者。

  • LLM Technical Primer:LLM概念科普。

    • 链接:https://github.com/karminski/one-small-step

    • 评价:适合初学者快速了解。

  • LLMsBook:LLM资源集合。

    • 链接:https://github.com/liucongg/LLMsBook

    • 评价:资源全面,适合查阅。

4. 专题资源

  • RAG(检索增强生成)

    • ACL 2023 Tutorial:https://acl2023-retrieval-lm.github.io/

    • Learn RAG From Scratch:https://www.youtube.com/watch?v=sVcwVQRHIc8

    • RAG++: From POC to Production:https://www.wandb.courses/courses/rag-in-production

    • OpenRAG:https://openrag.notion.site/Open-RAG-c41b2a4dcdea4527a7c1cd998e763595

    • 评价:RAG是LLM应用热点,适合中高级学习者深入学习。

  • 扩散模型

    • 讲义:https://www.dropbox.com/scl/fi/gmwhx7jfi2nvm8pudn5it/lecture_diffusion_models.pdf

    • 评价:适合生成模型研究者。

  • 视觉Transformer

    • Smol Vision:https://github.com/merveenoyan/smol-vision

    • 评价:适合视觉模型开发者。

  • 交互式可视化

    • Transformer Explainer:https://poloclub.github.io/transformer-explainer/

    • 评价:直观理解Transformer,适合初学者。

5. 社区与中文资源

  • 清华大学NLP公开课(刘知远团队)

    • 内容:大模型原理、微调及中文NLP应用。

    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/

    • 评价:★★★★☆,中文学习者复习必看,内容本地化。

  • PromptEngineering.org:提示工程资源。

    • 链接:https://promptengineering.org/

    • 评价:适合实践者。

  • LLM Agents Course:LLM代理开发。

    • 链接:https://llmagents-learning.org/f24

    • 评价:适合前沿应用开发者。


入门与复习必看课程

入门必看

  1. Andrej Karpathy - Neural Networks: Zero to Hero

    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。

    • 适合:零基础或有编程背景的初学者。

    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

  2. DeepLearning.AI - Generative AI for Everyone

    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。

    • 适合:完全零基础学习者。

    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/

  3. Hugging Face - NLP Course

    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。

    • 适合:有Python基础的初学者。

    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1

  4. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers

    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。

    • 适合:初学者快速掌握注意力机制。

    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies

    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。

    • 适合:有基础的学习者梳理理论。

    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ

  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models

    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。

    • 适合:熟悉Transformer的学习者。

    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg

  3. 清华大学NLP公开课(刘知远团队)

    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。

    • 适合:中文背景 Andrej Karpathy - Neural Networks: Zero to Hero

    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。

    • 适合:零基础或有编程背景的初学者。

    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

  4. DeepLearning.AI - Generative AI for Everyone

    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。

    • 适合:完全零基础学习者。

    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/

  5. Hugging Face - NLP Course

    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。

    • 适合:有Python基础的初学者。

    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1

  6. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers

    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。

    • 适合:初学者快速掌握注意力机制。

    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies

    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。

    • 适合:有基础的学习者梳理理论。

    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ

  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models

    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。

    • 适合:熟悉Transformer的学习者。

    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg

  3. 清华大学NLP公开课(刘知远团队)

    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。

    • 适合:中文背景的学习者。

    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/

  4. DeepLearning.AI - Knowledge Graphs for RAG

    • 理由:聚焦RAG进阶应用,理论与实践结合。

    • 适合:熟悉RAG的学习者。

    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/


学习路径建议

入门路径(1-2个月)

  1. 概念入门:学习《Generative AI for Everyone》(1周),快速了解大模型全貌。

  2. Transformer基础:观看《Andrej Karpathy - Introduction to Transformers》(1天),掌握自注意力机制。

  3. 实践上手:通过《Hugging Face - NLP Course》训练简单模型(2-3周)。

  4. 深入代码:完成《Andrej Karpathy - Build nanoGPT》,从头实现GPT(2-3周)。

复习路径(1个月)

  1. 理论梳理:重温《Geoffrey Hinton - Representing Part-Whole Hierarchies》(1天),理解Transformer局限性。

  2. RAG巩固:学习《Douwe Kiela - Retrieval Augmented Language Models》和《Knowledge Graphs for RAG》(1-2周)。

  3. 中文视角:复习《清华大学NLP公开课》,梳理本地化应用(1周)。

  4. 前沿跟踪:关注CS25 V5最新讲座(https://web.stanford.edu/class/cs25/),了解2025年进展。

其他建议

  • 实践驱动:利用nanoGPT、LLMs From Scratch等项目进行开发实践。

  • 社区参与:加入OpenAI Academy或Hugging Face社区,与专家交流。

  • 持续学习:定期关注DeepLearning.AI、斯坦福CS25等平台更新。


{
   "target":"简单认识我",
   "selfInfo":{
        "genInfo":"大厂面试官,中科院自动化所硕士(人工智能),从事数据闭环业务、RAG、Agent等,承担技术+平台的偏综合性角色。善于调研、总结和规划,善于统筹和协同,喜欢技术,喜欢阅读新技术和产品的文章与论文",
        "contactInfo":"abc061200x, v-adding disabled",
        "slogan":"简单、高效、做正确的事",
         "extInfo":"喜欢看电影、喜欢旅游、户外徒步、阅读和学习,不抽烟、不喝酒,无不良嗜好"
   } 
}

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值