当地时间5月30日,玛丽·米克尔(Mary Meeker)发布了长达340页的“AI趋势报告”(完整版报告请下拉至文末获取)。报告显示,AI的发展速度前所未见,用户增长、使用量和资本支出均呈现出爆炸式增长,其影响力可能远超技术本身。
玛丽·米克尔是美国风险投资家,曾就职于摩根士丹利和凯鹏华盈(Kleiner Perkins),于2018年创立了自己的风投公司邦德资本(BOND)。她主要专注于互联网与新技术领域投资,被誉为“互联网女王”。
AI发展速度前所未有
报告显示,在消费者、开发者、企业和政府部门中,AI的使用正在前所未有地激增。与互联网1.0革命的技术起步于美国,然后稳步向全球扩散不同的是,ChatGPT一下子登上了世界舞台,并在全球大部分地区同时增长。
具体来看,作为衡量算力的基本计量单位,浮点运算次数在2010年以后开始增速显著增加,年增长率达到360%。
值得注意的是,ChatGPT年搜索量达到3650亿的时间为两年,而谷歌用了11年,ChatGPT的增速是谷歌的5.5倍。
如果以美国计算相关专利授权数量为例,可以发现,第一次加速是在1995年,标志着互联网时代的开始。2004年起,其增速放缓,标志着互联网时代的发展也开始变慢。在2022年ChatGPT发布之后,专利数量又一次开始爆发式增长,而且比1995年那次更快。
AI用户的增速同样前所未有,ChatGPT的用户数量曾在17个月内翻了8倍。
中国正在引领开源竞赛
为何说AI爆炸式发展的影响力可能远超技术本身?
玛丽·米克尔在报告中直言,在开源模型领域,中国正在引领开源竞赛。
在玛丽·米克尔看来,OpenAI的GPT-4或Anthropic的Claude等闭源模型通常性能更强、更易于使用,因此也受到企业、消费者和政府青睐。但闭源模型往往需要数月的计算时间和数百万美元的支出,并且还是一个不透明的“黑箱”。
随着大语言模型的成熟和竞争的加剧,开源模式因其较低的成本、不断迭代的功能以及对开发人员和企业更广泛的可及性而兴起。此类模式可供任何人免费使用、修改和构建,因此普遍受到初创企业、研究人员/学者和独立开发人员的青睐。
再看国内各AI公司,开源模型已成为主要发力方向之一。
5月29日,DeepSeek宣布,DeepSeekR1模型已完成小版本升级,当前版本为DeepSeek-R1-0528。据介绍,DeepSeek-R1-0528仍然使用2024年12月所发布的DeepSeek V3 Base模型作为基座,但在后训练过程中投入了更多算力,显著提升了模型的思维深度与推理能力。更新后的R1模型在数学、编程与通用逻辑等多个基准测评中取得了当前国内所有模型中首屈一指的优异成绩,并且在整体表现上已接近其他国际顶尖模型。
而与旧版本的DeepSeek-R1保持一致,此次团队的开源仓库(包括模型权重)仍然统一采用MIT License,并允许用户利用模型输出、通过模型蒸馏等方式训练其他模型。
5月14日晚,阿里正式开源通义万相Wan2.1-VACE,单一模型可同时支持文生视频、图像参考视频生成、视频重绘、视频局部编辑、视频背景延展以及视频时长延展等全系列生成和编辑能力。
此前,阿里亦于4月开源新一代混合推理模型Qwen 3(千问3)。截至4月底,阿里通义已开源200余个模型,全球下载量超3亿次,千问衍生模型数超10万个,成为全球最大的开源模型族群。
智谱华章也在4月14日集中开源GLM-Z1-Air等模型,包括9B与32B尺寸,涵盖基座模型、推理模型和沉思模型。以上开源模型可免费用于商业用途、自由分发,为开发者提供了最大的使用和开发自由度。
据悉,此次模型开源后,智谱华章的GLM-4开源仓库已经在GitHub上斩获超过6000颗星星。最新模型上线智谱开放平台bigmodel后,当天有超过6000家企业和开发者接入,调用tokens日增幅超100%。
......
文│Mary Meeker
本报告共计:340页。
如欲获取完整版PDF文件
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓