如果你关注 AI 领域,最近肯定经常听到 MCP 这个词。
这是个啥呢?
照本宣科:MCP 是 Model Context Protocol 的缩写,也就是模型上下文协议。
这是 Anthropic 所推动的一项开放标准,为大语言模型(LLMs)应用提供一个标准化的接口,使其能够连接和交互外部数据源和工具。
它是为了克服 LLMs 应用仅依赖其训练数据的局限性,使其能够访问所需的上下文信息,并执行更广泛的任务。
该协议通过定义一套通用的规则和格式,使得 LLMs 应用可以在需要时动态地获取相关信息和执行操作,从而增强其功能和应用范围。
图片来源:https://norahsakal.com/blog/mcp-vs-api-model-context-protocol-explained/
说人话:就是一个让 AI 大模型连接万物,理解和使用外部信息和工具的统一标准。
就好比你的电脑连接外部设备,一般通过 USB 接口这个标准一样。 AI 大模型想连接其它软件、工具,可以使用 MCP 这个标准。
举个例子吧。
比如你有一个很厉害的大模型,比如 ChatGPT,但它只能回答基于自己学过的知识(比如 2023 年之前的酒店和航班信息)。现在你想让它帮你规划下周去巴黎的行程,但它不知道最新的机票价格、酒店空房情况,也无法直接帮你订票。
这时候,可以通过 MCP 这个规范让 AI 大模型接入携程、高德地图等等软件(前提是这个软件支持通过 MCP 规范调用,有 MCP Server),这样它就能查实时数据,拉取最新的酒店价格和空房信息。
调用支付接口订票,最后把结果整理成你能看懂的回答。
3万人 Star!
超火的 MCP Server 列表
在逛 GitHub 的时候,发现了一个超过 3W 人 Star 的开源项目,这是一个 MCP Server 盘点列表,热度还在极速攀升。
开源地址:https://github.com/punkpeye/awesome-mcp-servers
这个开源项目系统整理了 3000+ 可以接入使用的 MCP Server,覆盖浏览器自动化、搜索、金融、游戏、安全、科研等 20+ 垂直领域,包括本地和基于云服务的。
我挑几个介绍一下。
① 浏览器自动化
MCP-Playwright 这个 MCP 服务器,通过提供浏览器自动化能力,使 AI 大模型能够在真实浏览器环境中导航网页、执行点击/输入操作、截取屏幕截图以及运行 JavaScript
开源地址:https://github.com/executeautomation/mcp-playwright
② AI 解析内容生成摘要
AI摘要生成MCP服务器,支持多种内容类型:纯文本、网页、PDF文档、EPUB电子书、HTML内容。
开源地址:https://github.com/0xshellming/mcp-summarizer
③ 管理 Notion
notion_mcp 这个 MCP Server, 可以链接 AI 大模型与 Notion 平台,支持自动化页面管理、内容同步、模板生成等等。
开源地址:https://github.com/danhilse/notion_mcp
开源地址:https://github.com/suekou/mcp-notion-server
④ 地图 MCP Server
高德、腾讯、百度地图,三家地图服务商都已经布局MCP Server,为AI大模型与地图服务的结合提供了便捷的接口。这个不在这个开源项目的列表中,是我觉得比较重要,列出来了。
⑤ 搜索 ArXiv 研究论文
arxiv-mcp-server 这个 MCP Server,专为 arXiv 学术论文库设计,允许 AI 模型通过编程接口搜索论文、下载内容并进行深度分析(如摘要提炼、方法评估和结果解读),同时支持本地存储以加速访问
开源地址:https://github.com/blazickjp/arxiv-mcp-server
⑥ 更多
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓