Python爬虫超详细讲解(零基础入门,老年人都看的懂)_python需要什么程度才可以爬取资源

  • 后面的序号不一样,恰好与短评的序号相对应。那如果我们想爬取这个页面所有的短评信息,那么不要这个序号就好了呀。
  • 通过XPath信息,我们就可以用简单的代码将其爬取下来了:
import requests
from lxml import etree

#我们邀抓取的页面链接
url='https://book.douban.com/subject/1084336/comments/'

#用requests库的get方法下载网页
r=requests.get(url).text

#解析网页并且定位短评
s=etree.HTML(r)
file=s.xpath('//*[@id="comments"]/ul/li/div[2]/p/text()')

#打印抓取的信息
print(file)

在这里插入图片描述
爬取的该页面所有的短评信息

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也基本没问题了。

这个过程中你还需要了解一些Python的基础知识:

文件读写操作:用来读取参数、保存爬下来的内容

list(列表)、dict(字典):用来序列化爬取的数据

条件判断(if/else):解决爬虫中的判断是否执行

循环和迭代(for ……while):用来循环爬虫步骤

3.了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为text、csv这样的文件。还是延续上面的例子:

用Python的基础语言实现存储:

with open('pinglun.text','w',encoding='utf-8') as f:
    for i in file:
        print(i)
        f.write(i)

用pandas的语言来存储:

#import pandas as pd
#df = pd.DataFrame(file)
#df.to_excel('pinglun.xlsx')

这两段代码都可将爬下来的短评信息存储起来,把代码贴在爬取代码后面即可。
在这里插入图片描述
存储的该页的短评数据

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。以下知识点掌握就好:

+ 缺失值处理:对缺失数据行进行删除或填充
+ 重复值处理:重复值的判断与删除
+ 空格和异常值处理:清楚不必要的空格和极端、异常数据
+ 分组:数据划分、分别执行函数、数据重组### 4.掌握各种技巧,应对特殊网站的反爬措施

爬取一个页面的的数据是没问题了,但是我们通常是想爬取多个页面啊。
这个时候就要看看在翻页的时候url是如何变化了,还是以短评的页面为例,我们来看多个页面的url有什么不同:

https://book.douban.com/subject/1084336/comments/
https://book.douban.com/subject/1084336/comments/hot?p=2
https://book.douban.com/subject/1084336/comments/hot?p=3
https://book.douban.com/subject/1084336/comments/hot?p=4
……………………

通过前四个页面,我们就能够发现规律了,不同的页面,只是在最后标记了页面的序号。我们以爬取5个页面为例,写一个循环更新页面地址就好了。

for a in range(5):
    url="http://book.douban.com/subject/1084336/comments/hot?p={}".format(a)

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

比如我们经常发现有的网站翻页后url并不变化,这通常就是异步加载。我们用开发者工具取分析网页加载信息,通常能够得到意外的收获。
在这里插入图片描述
通过开发者工具分析加载的信息

比如很多时候如果我们发现网页不能通过代码访问,可以尝试加入userAgent 信息。
在这里插入图片描述
浏览器中的userAgent信息
在这里插入图片描述
在代码中加入userAgent信息

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

5.学习爬虫框架,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

6.学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

7.分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来非常吓人,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以不要被有些看起来很高深的东西吓到了。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一困难的是,刚开始没有经验的时候,在寻找资源、搜索解决问题的方法时总会遇到一些困难,因为往往在最开始,我们去描述清楚具体的问题都很难。如果有大神帮忙指出学习的路径和解答疑问,效率会高不少。

最后

作为一个IT的过来人,我自己整理了一些python学习资料,都是别人分享给我的,希望对你们有帮助。
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。

朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值