本文我们打算用pyecharts进行可视化展示。有同学可能使用的是老版本(0.5X),Pyecharts的1.x版本与老版本(0.5X)不兼容,如果无法导入可能是这个问题哈。
可视化所有语句均基于v1.7.1,通过以下语句可查询你的pyecharts版本:
import pyecharts
print(pyecharts.version)
扇形图
最贵的粽子1780元看来是吃不起了,那大家都买什么价位的呢?
先按照淘宝推荐的区间划分一下:
def price_range(x): #按照淘宝推荐划分价格区间
if x <= 22:
return ‘22元以下’
elif x <= 115:
return ‘22-115元’
elif x <= 633:
return ‘115-633元’
else:
return ‘633元以上’
再使用pyecharts来生成不同价格区间的粽子销量占比图。
看来百元以内的粽子(礼盒装)才是大家的正常承受范围,不过我还是选择小区门口的5块钱3个。
词云图
我们用jieba对爬取得到的商品名称分词,生成词云。
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
词云图
word1 = WordCloud(init_opts=opts.InitOpts(width=‘1350px’, height=‘750px’))
word1.add(“”, [*zip(key_words.words, key_words.num)],
word_size_range=[20, 200],
shape=SymbolType.DIAMOND)
word1.set_global_opts(title_opts=opts.TitleOpts(‘粽子商品名称词云图’),
toolbox_opts=opts.ToolboxOpts())
word1.render(“粽子商品名称词云图.html”)
硕大的粽子周围环绕着几个突出的关键词:礼盒装、鲜肉、蛋黄、嘉兴、豆沙、端午节。除去端午节相关的词汇,我们通过关键词大小似乎就知道几种口味的受欢迎情况。
查阅资料对比一下,还真是大体一致。
心疼我枣粽。
至于嘉兴这个地名,我们后文会继续提到。
条形图
上文我们查到了最贵的粽子,那么销量最好的粽子/店铺是什么呢?
安排
五芳斋共4款入围,其中一款礼盒装达到了100万+的销量,应该比这个还多(参见微信的10w+)。真真老老紧随其后,3款粽子进入TOP10。其余的品牌还有稻香村和知味观,额,第九名是卖粽叶的,看来自己包粽子的需求也是蛮大的嘛。
粽子店铺销量Top10其实与商品相似,五芳斋官方旗舰店和真真老老旗舰店占据首位,遥遥领先。
经过查阅,五芳斋,真真老老,都为嘉兴的粽子两大品牌,那难怪嘉兴在词云图里那么突出。嘉兴属于浙江省,销量冠亚军都在这里,那浙江岂不是占比很大。
还真是这样:
地图
继续使用pyecharts来生成各省份粽子销量分布图[2]
from pyecharts.charts import Map
计算销量
province_num = df.groupby(‘省份’)[‘销量’].sum().sort_values(ascending=False)
绘制地图
map1 = Map(init_opts=opts.InitOpts(width=‘1350px’, height=‘750px’))
map1.add(“”, [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())],
maptype=‘china’
)
map1.set_global_opts(title_opts=opts.TitleOpts(title=‘各省份粽子销量分布’),
visualmap_opts=opts.VisualMapOpts(max_=300000),
toolbox_opts=opts.ToolboxOpts()
)
map1.render(“各省份粽子销量分布.html”)
这个销量占比差异真的是太大了。
可以说中国粽子看浙江,浙江粽子看嘉兴[3](通过计算发货地址为浙江的粽子销量占比70.6%,而嘉兴占浙江的87.4%)
from selenium import webdriver
import time
import csv
import re
搜索商品,获取商品页码
def search_product(key_word):
定位输入框
browser.find_element_by_id(“q”).send_keys(key_word)
定义点击按钮,并点击
browser.find_element_by_class_name(‘btn-search’).click()
最大化窗口:为了方便我们扫码
browser.maximize_window()
等待15秒,给足时间我们扫码
time.sleep(15)
定位这个“页码”,获取“共100页这个文本”
page_info = browser.find_element_by_xpath(‘//div[@class=“total”]’).text
需要注意的是:findall()返回的是一个列表,虽然此时只有一个元素它也是一个列表。
page = re.findall(“(\d+)”,page_info)[0]
return page
获取数据
def get_data():
通过页面分析发现:所有的信息都在items节点下
items = browser.find_elements_by_xpath(‘//div[@class=“items”]/div[@class="item J_MouserOnverReq "]’)
for item in items:
参数信息
pro_desc = item.find_element_by_xpath(‘.//div[@class=“row row-2 title”]/a’).text
价格
pro_price = item.find_element_by_xpath(‘.//strong’).text
付款人数
buy_num = item.find_element_by_xpath(‘.//div[@class=“deal-cnt”]’).text
旗舰店
shop = item.find_element_by_xpath(‘.//div[@class=“shop”]/a’).text
发货地
address = item.find_element_by_xpath(‘.//div[@class=“location”]’).text
#print(pro_desc, pro_price, buy_num, shop, address)
with open(‘{}.csv’.format(key_word), mode=‘a’, newline=‘’, encoding=‘utf-8-sig’) as f:
csv_writer = csv.writer(f, delimiter=‘,’)
csv_writer.writerow([pro_desc, pro_price, buy_num, shop, address])
def main():
browser.get(‘https://www.taobao.com/’)
page = search_product(key_word)
print(page)
get_data()
page_num = 1
while int(page) != page_num:
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!