2024年BAM Bottleneck Attention Module__实现,重磅消息

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

F

)

\mathrm{F}^{\prime}=\mathrm{F}+\mathrm{F} \otimes \mathrm{M}(\mathrm{F})

F′=F+F⊗M(F)

为了设计一个有效且强大的模型,我们首先计算channel attention,然后计算spatial attention.这时M(F)就变成:

M

(

F

)

=

σ

(

M

c

(

F

)

M

s

(

F

)

)

\mathrm{M}(\mathrm{F})=\sigma\left(\mathrm{M}_{c}(\mathrm{F})+\mathrm{M}_{s}(\mathrm{F})\right)

M(F)=σ(Mc​(F)+Ms​(F))

这里σ 代表sigmoid函数,为了聚合feature map在每个通道维度,我们采用全局平均池化得到

F

C

F_{C}

FC​这个向量然后对全局信息在每个通道进行软编码。为了评估Attention在每个通道的效果?我们使用了一个多层感知(MLP)用一层隐藏层。在MLP之后,我们增加了BN去调整规模和空间分支一样的输出,channel attention可以被计算为:

M

c

(

F

)

=

B

N

(

M

L

P

(

AvgPool

(

F

)

)

)

\mathbf{M}_{\mathbf{c}}(\mathbf{F})=B N(M L P(\text {AvgPool}(\mathbf{F})))

Mc​(F)=BN(MLP(AvgPool(F)))

=

B

N

(

W

1

(

W

0

A

v

g

P

o

o

l

(

F

)

b

0

)

b

1

)

=B N\left(\mathbf{W}_{1}\left(\mathbf{W}_{0} A v g P o o l(\mathbf{F})+\mathbf{b}_{0}\right)+\mathbf{b}_{1}\right)

=BN(W1​(W0​AvgPool(F)+b0​)+b1​)
where

W

0

R

C

/

r

×

C

,

b

0

R

C

/

r

,

W

1

R

C

×

C

/

r

,

b

1

R

C

\mathbf{W}_{0} \in \mathbb{R}^{C / r \times C}, \mathbf{b}_{0} \in \mathbb{R}^{C / r}, \mathbf{W}_{1} \in \mathbb{R}^{C \times C / r}, \mathbf{b}_{1} \in \mathbb{R}^{C}

W0​∈RC/r×C,b0​∈RC/r,W1​∈RC×C/r,b1​∈RC

Spatial attention branch

这个空间分支产生了空间Attention去增强或者抑制特征在不同的空间位置,众所周知,利用上下文信息是去知道应该关注哪些位置的关键点。在这里我们为了高效性运用空洞卷积去增大感受野。
我们观察到,与标准卷积相比,空洞卷积有助于构造更有效的spatial map.
细节图:

在这里插入图片描述

空洞模型结构 给与中间feature map F,这个module 计算对应的Attention mapM(F)通过两个单独的Attention 分支–channle Mc 和空间

M

S

\mathrm{M}_{S}

MS​.这里有两个超参数 dilation value (d)和reduction ratio®. d参数决定了感受野大小,这对空间分支聚合上下文信息非常重要。这里我们set d=4 r=16.

我们采用空洞卷积来高效扩大感受野。我们观察到空洞卷积有助于构建比标准卷积更有效的空间映射。 我们的空间分支采用了ResNet建议的“瓶颈结构”,既节省了参数数量又节省了计算开销。 具体地,使用1×1卷积将特征

F

R

C

×

H

×

W

\mathbf{F} \in \mathbb{R}^{C \times H \times W}

F∈RC×H×W投影到缩小尺寸的

R

C

/

r

×

H

×

W

\mathbb{R}^{C / r \times H \times W}

RC/r×H×W,以在整个通道维度上对特征图进行结合和压缩。 为简单起见,我们使用与通道分支相同的缩减比r。 在减少之后,应用两个3×3扩张卷积以有效地利用上下文信息。 最后,使用1×1卷积将特征再次简化为

R

1

×

H

×

W

\mathbb{R}^{1 \times H \times W}

R1×H×W空间注意力图。 对于缩放调整,在空间分支的末尾应用批量标准化层。 简而言之,空间注意力计算如下:

M

s

(

F

)

=

B

N

(

f

3

1

×

1

(

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

W

\mathbb{R}^{1 \times H \times W}

R1×H×W空间注意力图。 对于缩放调整,在空间分支的末尾应用批量标准化层。 简而言之,空间注意力计算如下:

M

s

(

F

)

=

B

N

(

f

3

1

×

1

(

[外链图片转存中…(img-xzcphmVr-1715520486815)]
[外链图片转存中…(img-ftF1yfOp-1715520486816)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值