opencv-相机标定步骤、评估标定误差以及标定之后图像坐标到世界坐标的转换_opencv特征值转换成坐标值(1)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  1. }
  2. /*设置相机的初始参数 也可以不估计*/
  3. void CalibrationEvaluate(void)//标定结束后进行评价
  4. {
  5. double err=0;
  6. double total_err=0;
  7. //calibrateCamera(objRealPoint, corners, Size(imageWidth, imageHeight), intrinsic, distortion_coeff, rvecs, tvecs, 0);
  8. cout << “每幅图像的定标误差:” << endl;
  9. for (int i = 0; i < corners.size(); i++)
  10. {
  11. vector image_points2;
  12. vector tempPointSet = objRealPoint[i];
  13. projectPoints(tempPointSet, rvecs[i], tvecs[i], intrinsic, distortion_coeff, image_points2);
  14. vector tempImagePoint = corners[i];
  15. Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
  16. Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
  17. for (int j = 0; j < tempImagePoint.size(); j++)
  18. {
  19. image_points2Mat.at(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
  20. tempImagePointMat.at(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
  21. }
  22. err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
  23. total_err = err + total_err;
  24. cout << “第” << i + 1 << “幅图像的平均误差:” << err << “像素” << endl;
  25. }
  26. cout << “总体平均误差:” << total_err / (corners.size() + 1) << “像素” << endl;
  27. }
  28. void guessCameraParam(void)
  29. {
  30. /*分配内存*/
  31. intrinsic.create(3, 3, CV_64FC1);
  32. distortion_coeff.create(5, 1, CV_64FC1);
  33. /*
  34. fx 0 cx
  35. 0 fy cy
  36. 0 0  1
  37. */
  38. intrinsic.at(0, 0) = 256.8093262;   //fx
  39. intrinsic.at(0, 2) = 160.2826538;   //cx
  40. intrinsic.at(1, 1) = 254.7511139;   //fy
  41. intrinsic.at(1, 2) = 127.6264572;   //cy
  42. intrinsic.at(0, 1) = 0;
  43. intrinsic.at(1, 0) = 0;
  44. intrinsic.at(2, 0) = 0;
  45. intrinsic.at(2, 1) = 0;
  46. intrinsic.at(2, 2) = 1;
  47. /*
  48. k1 k2 p1 p2 p3
  49. */
  50. distortion_coeff.at(0, 0) = -0.193740;  //k1
  51. distortion_coeff.at(1, 0) = -0.378588;  //k2
  52. distortion_coeff.at(2, 0) = 0.028980;   //p1
  53. distortion_coeff.at(3, 0) = 0.008136;   //p2
  54. distortion_coeff.at(4, 0) = 0;          //p3
  55. }
  56. void outputCameraParam(void)
  57. {
  58. /*保存数据*/
  59. //cvSave(“cameraMatrix.xml”, &intrinsic);
  60. //cvSave(“cameraDistoration.xml”, &distortion_coeff);
  61. //cvSave(“rotatoVector.xml”, &rvecs);
  62. //cvSave(“translationVector.xml”, &tvecs);
  63. /*输出数据*/
  64. cout << “fx :” << intrinsic.at(0, 0) << endl << “fy :” << intrinsic.at(1, 1) << endl;
  65. cout << “cx :” << intrinsic.at(0, 2) << endl << “cy :” << intrinsic.at(1, 2) << endl;
  66. cout << “k1 :” << distortion_coeff.at(0, 0) << endl;
  67. cout << “k2 :” << distortion_coeff.at(1, 0) << endl;
  68. cout << “p1 :” << distortion_coeff.at(2, 0) << endl;
  69. cout << “p2 :” << distortion_coeff.at(3, 0) << endl;
  70. cout << “p3 :” << distortion_coeff.at(4, 0) << endl;
  71. }
  72. //int _tmain(int argc, _TCHAR* argv[])
  73. int main()
  74. {
  75. Mat img;
  76. int goodFrameCount = 0;
  77. namedWindow(“chessboard”);
  78. cout << “按Q退出 …” << endl;
  79. while (goodFrameCount < frameNumber)
  80. {
  81. char filename[100];
  82. sprintf_s(filename, “chao%d.bmp”, goodFrameCount);
  83. //sprintf_s(filename, “chess%d.jpg”, goodFrameCount);
  84. goodFrameCount++;
  85. rgbImage = imread(filename, 1);
  86. cvtColor(rgbImage, grayImage, CV_BGR2GRAY);
  87. imshow(“Camera”, grayImage);
  88. bool isFind = findChessboardCorners(rgbImage, boardSize, corner, 0);
  89. //bool isFind = findChessboardCorners(rgbImage, boardSize, corner, CV_CALIB_CB_NORMALIZE_IMAGE);
  90. if (isFind == true) //所有角点都被找到 说明这幅图像是可行的
  91. {
  92. /*
  93. Size(5,5) 搜索窗口的一半大小
  94. Size(-1,-1) 死区的一半尺寸
  95. TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1)迭代终止条件
  96. */
  97. cornerSubPix(grayImage, corner, Size(5, 5), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1));
  98. drawChessboardCorners(rgbImage, boardSize, corner, isFind);
  99. imshow(“chessboard”, rgbImage);
  100. corners.push_back(corner);
  101. //string filename = “res\image\calibration”;
  102. //filename += goodFrameCount + “.jpg”;
  103. //cvSaveImage(filename.c_str(), &IplImage(rgbImage));       //把合格的图片保存起来
  104. cout << “The image is good” << endl;
  105. }
  106. else
  107. {
  108. cout << “The image is bad please try again” << endl;
  109. }
  110. //  cout << “Press any key to continue…” << endl;
  111. //  waitKey(0);
  112. if (waitKey(10) == ‘q’)
  113. {
  114. break;
  115. }
  116. //  imshow(“chessboard”, rgbImage);
  117. }
  118. /*
  119. 图像采集完毕 接下来开始摄像头的校正
  120. calibrateCamera()
  121. 输入参数 objectPoints  角点的实际物理坐标
  122. imagePoints   角点的图像坐标
  123. imageSize     图像的大小
  124. 输出参数
  125. cameraMatrix  相机的内参矩阵
  126. distCoeffs    相机的畸变参数
  127. rvecs         旋转矢量(外参数)
  128. tvecs         平移矢量(外参数)
  129. */
  130. /*设置实际初始参数 根据calibrateCamera来 如果flag = 0 也可以不进行设置*/
  131. guessCameraParam();
  132. cout << “guess successful” << endl;
  133. /*计算实际的校正点的三维坐标*/
  134. calRealPoint(objRealPoint, boardWidth, boardHeight, frameNumber, squareSize);
  135. cout << “cal real successful” << endl;
  136. /*标定摄像头*/
  137. calibrateCamera(objRealPoint, corners, Size(imageWidth, imageHeight), intrinsic, distortion_coeff, rvecs, tvecs, 0);
  138. cout << “calibration successful” << endl;
  139. /*保存并输出参数*/
  140. outputCameraParam();
  141. CalibrationEvaluate();
  142. cout << “out successful” << endl;
  143. /*显示畸变校正效果*/
  144. Mat cImage;
  145. undistort(rgbImage, cImage, intrinsic, distortion_coeff);
  146. imshow(“Corret Image”, cImage);
  147. cout << “Correct Image” << endl;
  148. cout << “Wait for Key” << endl;
  149. waitKey(0);
  150. system(“pause”);
  151. return 0;
  152. }

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

究,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值