AI Ping体验记:终于有人做大模型服务的“性能监控”了

文章介绍了AI Ping平台,这是一个大模型服务性能评测工具,帮助技术选型人员客观评估不同服务商。平台覆盖21家供应商的226个模型服务,从延迟、吞吐和可靠性三个关键维度进行评测,采用严格测试规范和7x24小时持续监测。作者通过实际使用体验,认为该平台能大幅节省选型时间,提供客观真实的数据,让大模型服务选择从"拍脑袋"变成"看数据",有效解决了技术选型的痛点。


引言

最近几个月,我们公司在开发AI应用平台并集成到现有系统中。作为项目的技术选型负责人,我被MaaS平台API的选择问题折磨得不轻。面对市面上众多的大模型服务商,如何选出最适合我们的那一个,真的是个大难题。
市面上的MaaS平台越来越多,光是国内的就有20多家,这还是我知道的,算上那些还没了解过的,只有更多。每家都说自己的服务好,延迟低,价格优。但是实际使用起来呢?有时候快得起飞,有时候慢得像蜗牛。有时候白天表现不错性能非常好,晚上就开始拉胯起来了。有的标称参数很漂亮,但是实际体验下来却差强人意。
更让人头疼的是啥,我们在做技术选型的时候,往往只能凭借着感觉或者官方给出的理论数据。缺乏一个客观、持续、全面的性能对比平台,就跟那盲人摸象一样。哈哈哈哈。
就在今天阳历9月13号,我在杭州GOSIM大会上了解到清华大学和中国软件评测中心联合发布了《2025大模型服务性能排行榜》,背后的技术支持方是一个叫AI Ping的平台。抱着试试看的心态,我深度体验了一下这个产品。
榜单:

初次接触:这就是我想要的工具

官网地址: 点击跳转官网

打开AI ping的首页,我的第一感觉就是:简洁,专业。没有花里胡哨的营销词汇,直接就是各种性能数据和排行榜。

深度体验:数据说话,不玩虚的

覆盖范围够广

目前的话,AI Ping已经整合评测了21家供应商,226个模型服务。基本上国内主流的MaaS平台都包含了。
这个覆盖面对我来说已经完全够用了。之前我需要一个个去各家官网查参数,看文档,现在一个平台就能对比所有供应商以及模型服务了。

评测维度很实用

AI Ping的评测指标正好戳中了我的痛点:

  • 延迟(Latency):从发送请求到收到第一个token的时间
  • 吞吐(Throughput):每秒收到的token平均数
  • 可靠性(Reliability):成功请求占比

这三个指标直接关系到用户体验。延迟影响响应速度,吞吐影响处理效率,可靠性影响服务稳定性。比那些只看精度的评测更贴近实际使用场景。

真实案例:DeepSeek-R1对比

我特别关注DeepSeek-R1这个模型,因为最近项目中正在考虑使用。

  • 各个供应商的性能差异
  • 不同供应商的价格对比(输入/输出token价格)
  • 不同供应商上下文长度和最大输出长度的对比
  • 不同供应商实时的吞吐量和延迟数据对比

这种对比让我发现,同一个模型在不同供应商那里,性能表现竟然差别这么大!有些代理商的上下文长度比官方还要高,有些则明显拖后腿。

让我印象深刻的几个细节

测试规范很严格

AI Ping的测试规范让我觉得很专业:

  • 同一轮测试使用相同的输入Prompt和参数
  • 同一时间段内进行测试
  • 不使用缓存,避免"作弊"
  • 不同轮次间变换Prompt前缀
  • 统一从北京地区服务器发出请求

这种严格的测试标准保证了数据的公平性和可信度。

7x24小时持续监测

这个功能太赞了!不是那种一次性"跑分",而是持续监控各个时段的性能表现。
我发现有些服务商在白天表现不错,但到了晚上高峰期就开始掉链子。有了这个持续监测,我就能选择那些全天候稳定的服务商。

数据更新及时

每日更新的性能排行榜让我能及时了解各家服务商的最新表现。这在快速迭代的AI行业特别重要。

实际使用感受

优点

  1. 节省选型时间:以前需要一周时间调研的工作,现在半小时就能搞定
  2. 数据客观真实:基于实际测试,不是营销数据
  3. 界面清晰易懂:技术人员和产品经理都能快速上手
  4. 更新及时:跟上行业发展节奏

改进建议

  1. 希望能增加更多地区的测试节点(不只是北京)
  2. 可以考虑增加成本效益比的综合评分
  3. 希望能提供API,方便集成到我们的选型工具中

写在最后

作为一个在AI应用开发一线的技术人员,AI Ping确实解决了我的一个痛点。它让大模型服务的选择从"拍脑袋"变成了"看数据"。
特别是在当前这个大模型服务商百花齐放的时代,有这样一个第三方的、客观的评测平台,对整个行业的健康发展都是有益的。
ng确实解决了我的一个痛点。它让大模型服务的选择从"拍脑袋"变成了"看数据"。
特别是在当前这个大模型服务商百花齐放的时代,有这样一个第三方的、客观的评测平台,对整个行业的健康发展都是有益的。
如果你也在为选择哪家大模型服务而纠结,不妨去AI Ping看看。数据会告诉你答案。

零基础如何高效学习大模型?

为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

在这里插入图片描述

【大模型全套视频教程】

教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。

从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。

同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

在这里插入图片描述

深耕 AI 领域技术专家带你快速入门大模型

跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

在这里插入图片描述

【精选AI大模型权威PDF书籍/教程】

精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

在这里插入图片描述

【AI 大模型面试题 】

除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。

【大厂 AI 岗位面经分享(92份)】

图片

【AI 大模型面试真题(102 道)】

图片

【LLMs 面试真题(97 道)】

图片

【640套 AI 大模型行业研究报告】

在这里插入图片描述

【AI大模型完整版学习路线图(2025版)】

明确学习方向,2025年 AI 要学什么,这一张图就够了!

img

👇👇点击下方卡片链接免费领取全部内容👇👇

在这里插入图片描述

抓住AI浪潮,重塑职业未来!

科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。

行业趋势洞察:

  • 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
  • 人才争夺战: 拥有3-5年经验、扎实AI技术功底真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
  • 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。

与其观望,不如行动!

面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

在这里插入图片描述

01 为什么分享这份学习资料?

当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。

因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!

我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。

*02 这份资料的价值在哪里?*

专业背书,系统构建:

  • 本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士美国加州理工学院博士学位,在人工智能领域造诣深厚:

    • 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇
    • 拥有多项中美发明专利。
    • 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
  • 目前,我有幸与鲁博士共同进行人工智能相关研究。

在这里插入图片描述

内容实用,循序渐进:

  • 资料体系化覆盖了从基础概念入门核心技术进阶的知识点。

  • 包含丰富的视频教程实战项目案例,强调动手实践能力。

  • 无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考助力你提升技术能力,向大模型相关岗位转型发展

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

抓住机遇,开启你的AI学习之旅!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值