大语言模型原理与工程实践:Decoder 的代表:GPT 系列

大语言模型原理与工程实践:Decoder 的代表:GPT 系列

关键词:

  • 大语言模型(Large Language Model)
  • 解码器(Decoder)
  • GPT(Generative Pre-trained Transformer)
  • 自然语言处理(Natural Language Processing)

1. 背景介绍

1.1 问题的由来

随着人工智能技术的快速发展,对自然语言处理的需求日益增加。尤其在生成文本、回答问题、翻译文本等领域,对模型的能力提出了更高的要求。现有的语言模型,如循环神经网络(RNN)和长短时记忆网络(LSTM),虽然在特定任务上表现出色,但在处理长序列和捕捉全局语义时存在局限。为了解决这些问题,生成式预训练变换器(GPT)系列应运而生,它通过注意力机制有效地处理序列数据,从而实现了在多种自然语言处理任务上的突破。

1.2 研究现状

GPT系列模型,包括GPT、GPT-2、GPT-3等,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值