Q-Learning - 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在人工智能领域,强化学习(Reinforcement Learning,RL)是一种重要的机器学习方法,它通过智能体(Agent)与环境的交互来学习如何在给定环境中做出最优决策。Q-Learning作为一种经典的强化学习算法,因其简单易实现、适用范围广等优点,在各个领域得到了广泛的应用。
1.2 研究现状
近年来,随着深度学习技术的快速发展,强化学习也取得了显著的进展。虽然深度强化学习(Deep Reinforcement Learning,DRL)在部分复杂任务上取得了突破性成果,但Q-Learning等基于值函数的强化学习算法在许多实际场景中仍具有不可替代的优势。
1.3 研究意义
Q-Learning算法在游戏、机器人控制、推荐系统、金融交易等领域都有着广泛的应用。深入研究Q-Learning算法的原理、实现和应用,对于推动人工智能技术的发展具有重要意义。