Deep Q-Network (DQN), 目标网络, 经验回放, 训练稳定性, 价值函数估计
1. 背景介绍
深度强化学习 (Deep Reinforcement Learning, DRL) 近年来取得了令人瞩目的进展,在游戏、机器人控制、自动驾驶等领域展现出强大的应用潜力。其中,Deep Q-Network (DQN) 作为一种经典的 DRL 算法,凭借其高效性和易于实现的特点,在解决复杂决策问题方面取得了显著成果。
DQN 算法的核心思想是利用深度神经网络来估计状态-动作值函数 (Q-value),并通过最大化 Q-value 的期望来学习最优策略。然而,在训练过程中,DQN 算法容易受到过拟合和震荡的影响,导致训练不稳定。为了解决这个问题,DQN 算法引入了目标网络 (Target Network) 的概念。
2. 核心概念与联系
目标网络是 DQN 算法中一个重要的组成部分,它与主网络 (Main Network) 共同作用,帮助 DQN 算法稳定地学习最优策略。
目标网络的作用:
- 稳定训练: 目标网络的引入可以有效地缓解 DQN 算法训练过程中的震荡问题。
- 减少过拟合: 目标网络的更新频率较低,可以防止模型过拟合训练数据