一切皆是映射:DQN中的目标网络:为什么它是必要的?

Deep Q-Network (DQN), 目标网络, 经验回放, 训练稳定性, 价值函数估计

1. 背景介绍

深度强化学习 (Deep Reinforcement Learning, DRL) 近年来取得了令人瞩目的进展,在游戏、机器人控制、自动驾驶等领域展现出强大的应用潜力。其中,Deep Q-Network (DQN) 作为一种经典的 DRL 算法,凭借其高效性和易于实现的特点,在解决复杂决策问题方面取得了显著成果。

DQN 算法的核心思想是利用深度神经网络来估计状态-动作值函数 (Q-value),并通过最大化 Q-value 的期望来学习最优策略。然而,在训练过程中,DQN 算法容易受到过拟合和震荡的影响,导致训练不稳定。为了解决这个问题,DQN 算法引入了目标网络 (Target Network) 的概念。

2. 核心概念与联系

目标网络是 DQN 算法中一个重要的组成部分,它与主网络 (Main Network) 共同作用,帮助 DQN 算法稳定地学习最优策略。

目标网络的作用:

  • 稳定训练: 目标网络的引入可以有效地缓解 DQN 算法训练过程中的震荡问题。
  • 减少过拟合: 目标网络的更新频率较低,可以防止模型过拟合训练数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值