【AI大模型】kimi o1和deepseek o1对比,非常直观!

前言

两家凑巧同一天放出了解题推理模型,简单对比着看了下实现方案,o1 类模型实现并没有和大家早期推测的那样用上 MCTS,PRM 这些方法,个人感觉也是太复杂的方法 scaling 不了。

目前各家用的方案看起来更像是 sft+rl 的加强版,把推理过程内含进生成,而不是用结构去引导生成。两家效果看报告比较接近,个有所长。

code 和 math deepseek 强了一点点,kimi 支持 vision。base 的 rl 基于 token, o1 的 rl 基于思考过程的 node,更符合直觉。

总体上,kimi 的方案是 pretraining,vanilla supervised fine-tuning (SFT),long-CoT supervised fine-turning,and reinforcement learning (RL)。

kimi 的方案可能更接近 openai o1,先用高质量的 Cot 数据 finetune一个推理模型,然后用一堆 rm 进行大规模的强化学习,路子比较传统一些。讲的比较清楚。

deepseek 的方案是 pretrainning,Cold start SFT,DeepSeek-R1-Zero,Rejection Sampling and SFT,RL2 for all Scenarios。

deepseek 方案最重要的步骤是 DeepSeek-R1-Zero,用了一个 cot 的 prompt 模板,然后一堆基于规则的 reward 模型,强化学习用的 GRPO,方法比较直接。

但是 deepseek 的方案从 base model 直接训练推理能力,实在太强了,有种大力出奇迹的美。

总体来说,deepseek 方案创新度更高,kimi 方案可能更接近 openai 的路子。

1、kimi 方案的一些细节

vanilla SFT

非推理任务,包括问答、写作和文本处理,先人工标注构建一个种子数据集,训练一个种子模型。

随后收集多样化提示,用种子模型为每个提示生成多个回复。标注者对这些回复进行排序,对排名最高的回复进行优化,以生成最终版本。

对于数学和编程问题等推理任务,基于规则和奖励模型的验证比人工判断更准确和高效,利用拒绝采样来扩展 SFT 数据集。

Long-CoT Supervised Fine-Tuning

这一步应该是让模型具有长思维链能力,方便后续 RL 学习。

首先要构建一套 RL Prompt,满足 3 个要求 Diverse Coverage(多样性)、Balanced Difficulty(难度均衡)、Accurate Evaluability(方便评估),然后构建了一个小而高质量的长链思维(long-CoT)预热数据集,其中包含针对文本和图像输入的经过准确验证的推理路径。

这种方法类似于拒绝采样(RS),但侧重于通过提示工程生成长链思维推理路径。

生成的预热数据集旨在封装对人类推理至关重要的关键认知过程,例如规划,即模型在执行前系统地列出步骤;评估,涉及对中间步骤的批判性评估;反思,使模型能够重新考虑并优化其方法;以及探索,鼓励考虑替代解决方案。

通过对该预热数据集进行轻量级的监督微调(SFT),经过微调后模型生成的回复更详细且逻辑一致更好。

ps:RL Prompt 具体什么样子,怎么指导 Long Cot 不太清楚。

RL

这部分篇幅很多,讲了推理问题的路径搜索和策略优化算法,但是看最后的 gradient 公式,就是正常的 policy gradient,很多东西都内含进生成里面了,比如策略 z。

2、Deepseek 方案的一些细节

冷启动,针对 DeepSeek-R1-Zero 的可读性差,格式差,不符合人类偏好的问题,做了几千条冷启动数据 finetune。

Reasoning-oriented Reinforcement Learning,这个阶段类似 DeepSeek-R1-Zero 阶段,同时为了为了缓解语言混合问题,强化学习训练中引入了语言一致性奖励,score 为目标语言词汇在思维链中所占的比例。

Rejection Sampling and Supervised Fine-Tuning,利用推理数据和非推理数据一起进行 SFT,以增强模型在写作、角色扮演和其他通用任务中的能力。

Reinforcement Learning for all Scenarios,二次强化学习阶段,旨在提高模型的有用性和无害性,同时优化其推理能力,对于推理数据,用基于规则的奖励来指导数学、代码和逻辑推理领域的学习过程。

对于通用数据,采用奖励模型来捕捉复杂和微妙场景中的人类偏好。

3、总结

deepseek 方案看起来更简洁,创新程度更高,但是对工程能力要求更高,看起来简单实现起来就不是那么回事了。

kimi 的方案可能更接近 openai o1,论文写的比较详细,抄作业的难度会更低一点。

目前推理模型的核心还是高质量的 cot 推理数据加上上规模的强化学习。相信后面还会有很多接近 o1 效果的模型出现。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 三个模型的主要特点性能差异 #### 特点对比 Kimi 是一种专注于多模态处理的大型语言模型,能够有效理解并生成图像、文字等多种形式的内容[^1]。其设计目标在于提供更贴近人类交互体验的服务,在对话理解情感分析方面表现出色。 ChatGPT 则由 OpenAI 开发,基于 GPT 系列架构演化而来,具有强大的自然语言生成能力以及广泛的领域适应性[^2]。它通过强化学习技术进一步优化了对话质量,使得生成的回答更加连贯且贴合上下文需求。 DeepSeek 是来自深度求索公司的一系列大语言模型产品线之一,以其高效训练机制大规模参数量著称[^3]。该模型不仅具备优秀的文本生成能力,还特别强调计算资源利用率上的改进,从而降低运行成本的同时保持高性能表现。 #### 性能差异 在推理速度上,由于采用了不同的算法优化策略技术手段,三者之间存在一定差距。例如,DeepSeek 在硬件加速支持下的批量处理效率较高,适合需要快速响应的应用场景;而 Kimi 因为其复杂的跨模态融合操作可能稍微牺牲了一些纯文本任务中的即时反馈速率[^4]。 关于泛化能力定制潜力方面,ChatGPT 凭借长期积累的数据优势及持续迭代的学习框架,通常能够在新领域或少见话题上有较好的基础认知水平[^5]。相比之下,虽然其他两款模型同样拥有较强的基础功能覆盖范围,但在特定行业术语解析或者文化背景关联等方面或许稍逊一筹。 另外值得注意的是安全性考量——随着这些先进 AI 技术被广泛应用于实际业务流程当中,如何保障用户隐私不泄露成为了一个重要课题。在这方面,各家公司都采取了一系列措施来加强防护力度,比如数据脱敏处理、访问权限控制等等[^6]。 ```python # 假设我们有一个简单的函数用于评估不同模型的表现分数(虚构示例) def evaluate_model_performance(model_name, task_type="text"): scores = { "kimi": {"text":87,"image":95}, "chatgpt":{"text":92,"audio":80}, "deepseek":{"text":90} } return scores.get(model_name.lower(), {}).get(task_type.lower(), None) print(evaluate_model_performance('Kimi', 'text')) # 输出Kim对于文本任务的成绩 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值