DeepSeek在编写脚本方面的能力非常强大,尤其在编程、推理和数学计算方面展现出了超越普通AI的能力。DeepSeek的核心优势在于其编程能力的显著提高,能够轻松应对前端脚本和后端逻辑的编写,大大降低了程序员编写代码的难度。
今天我们就对比下deepseek、豆包、通义千问、文心一言这四个进行一下对比,
对比的题目为:
《帮我写一个处理excel数据的python脚本,要求:100万条数据,去除重复数据,将处理好的数据存储到新的excel中。》
下面我们逐一看看那个AI的能力更优秀^_^
1、Deepseek
好的,我现在需要帮用户写一个处理Excel数据的Python脚本,具体要求是处理100万条数据,去重,然后存到新的Excel文件中。我得先理清楚思路,看看怎么一步步实现这个需求。
首先,用户的数据量很大,100万条,用普通的Excel处理方式可能不太行(非常棒棒),因为常规的库比如xlrd、openpyxl处理大数据可能效率不高,甚至无法支持。所以得考虑使用适合处理大数据的库,比如pandas。不过pandas在处理百万行数据时,虽然可行,但内存占用可能会很高,需要注意优化。
然后,去重的逻辑。用户可能指的是去除完全重复的行,或者根据某几列去重(非常棒)。这里用户没具体说明,所以假设是去除完全重复的行。在pandas中,可以用drop_duplicates()方法。不过需要注意,处理大数据时这个方法会不会有性能问题,可能需要分块处理或者优化参数。
存储到新的Excel中,同样要考虑文件格式。Excel的xlsx格式对于百万行数据来说,一个sheet可能放不下,因为Excel的单个sheet最大行数在104万左右(非常棒棒)。所以如果数据接近或超过这个数,可能需要分多个sheet或者使用xlsb格式。但pandas的to_excel方法可能不支持xlsb,可能需要用其他库,比如pyxlsb。不过用户可能希望用常规的格式,所以得提醒用户注意行数限制。
另外,处理大数据时,内存可能不足。可能需要逐块读取,比如使用pandas的chunksize参数(非常棒棒),分块读取和处理,然后再合并结果。不过去重的话,分块处理可能会导致无法全局去重,所以需要先读取所有数据,或者分块处理后再合并去重,但这样内存压力可能更大。这时候可能需要权衡,或者让用户确保数据可以分块处理,或者接受可能的内存使用。
接下来,具体步骤:
1. 读取原始Excel文件。使用pandas的read_excel函数,可能需要指定engine='openpyxl',特别是xlsx文件。对于大文件,分块读取可能更高效,但要注意去重的全局性。
2. 去重处理。使用drop_duplicates(),默认保留第一个出现的重复项。是否需要考虑某些列作为去重依据?用户没说明,所以先按整行去重。
3. 写入新Excel文件。使用to_excel,但要注意xlsx的行数限制。100万条数据可能超过限制,所以需要检查处理后的数据行数是否超过104万。如果超过,可能需要分割到多个sheet,或者改用csv或其他格式。但用户明确要求存到Excel,可能需要提醒这一点。
另外,可能遇到的性能问题,比如内存不足,处理速度慢。可以建议使用更高效的数据类型,比如在读取时指定dtype,