关于大模型训练常见概念讲解

随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调等方法也在不断更新。下面笔者根据资料整理一些关于大模型训练常见概念解释。

1 Pre-training(预训练)


预训练是指在模型的初始阶段,使用大量数据对模型进行训练,以便让模型学习到通用的特征和知识。这些特征和知识可以是语言模型中的词嵌入,或者是图像识别模型中的视觉模式。

  • 通常发生在模型开发的早期阶段。

  • 目的是在大规模数据集上学习通用特征,为后续任务奠定基础。

  • 不针对特定任务,而是追求广泛的适用性。

2 Post-training(后训练)


后训练是指在预训练模型的基础上,针对特定的任务或数据集进行额外的训练。这个阶段通常涉及到微调(Fine-tuning),即调整预训练模型的参数以适应新的任务。

  • 发生在预训练之后,模型部署前或部署初期。

  • 针对特定的任务或数据集进行额外训练,以优化模型性能。

  • 可以包括Fine-tuning(微调)和Reinforcement Learning from Human Feedback(RLHF,人类反馈的强化学习)等方法。

2.1 Llama 3.1后训练

在后训练过程中,Meta AI团队采用了一种相对简单的方法,包括监督微调(SFT)、拒绝采样和直接偏好优化(DPO)。他们观察到,像带PPO的RLHF这样的强化学习算法与这些技术相比,稳定性较低且更难扩展。值得注意的是,SFT和DPO步骤在多轮中反复迭代,融合了人工生成和合成数据。在描述更多细节之前,他们的工作流程如下图所示。

2.2 大模型性能提升之路

【从Qwen2,Apple Intelligence Foundation,Gemma 2,Llama 3.1看大模型的性能提升之路】 阿里巴巴的 Qwen 2、苹果的基础模型(AFM)、谷歌的 Gemma 2 和 Meta 的Llama 3.1

这四种模型在预训练和后训练方面都采用了略有不同的方法。当然,方法论是重叠的,但没有哪一种训练流程完全相同。对于预训练,一个共同的特点似乎是所有方法都使用多阶段预训练流程,其中一般核心预训练之后是上下文延长步骤,有时是高质量退火步骤。下图再次一目了然地展示了预训练中采用的不同方法。

在训练后,也没有一个流程是完全相同的。似乎拒绝采样现在已成为训练后过程中的常见做法。然而,在 DPO 或 RLHF 方面,目前还没有达成共识或偏好。

3 Continue Training(持续训练)


持续训练是指在模型已经进行了预训练和可能的后训练之后,继续在新数据上进行训练,以不断更新和改进模型的性能。

  • 可能在模型部署后的任何阶段进行。

  • 目的是不断适应新数据,保持模型性能的稳定和提升。

  • 持续训练可以包含后训练作为其中的一个阶段。

4 Pre-training、Post-training、Continue training的区别


4.1 对比

概念Pre-training(预训练)Post-training(后训练)Continue Training(持续训练)
定义预训练是指在模型的初始阶段,使用大量数据对模型进行训练,以便让模型学习到通用的特征和知识。这些特征和知识可以是语言模型中的词嵌入,或者是图像识别模型中的视觉模式。后训练是指在预训练模型的基础上,针对特定的任务或数据集进行额外的训练。这个阶段通常涉及到微调(Fine-tuning),即调整预训练模型的参数以适应新的任务。持续训练是指在模型已经进行了预训练和可能的后训练之后,继续在新数据上进行训练,以不断更新和改进模型的性能。
应用在自然语言处理(NLP)中,预训练模型如 BERT 或 GPT 通过在大规模文本语料库上进行训练,学习语言的通用模式。在计算机视觉中,预训练模型如 ResNet 或 VGG 通过在大型图像数据集(如 ImageNet)上进行训练,学习视觉特征。例如,在 NLP 中,一个预训练的 BERT 模型可能会在特定领域的文本上进行后训练,以提高在该领域的性能。在强化学习中,后训练可能涉及到在预训练策略的基础上进行进一步的优化和调整。这在实时系统或需要不断适应新数据的场景中很常见,如推荐系统或股票市场预测模型,它们需要不断地从新数据中学习以保持其准确性和相关性。
目的预训练的目的是构建一个强大的特征提取器,这个特征提取器可以在后续的任务中被重用或微调。后训练的目的是让模型能够适应特定的任务或数据分布,提高模型在这些特定场景下的性能。持续训练的目的是使模型能够适应随时间变化的数据分布,保持其长期的有效性和适应性。

4.2 区别

  • 训练阶段: 预训练通常发生在模型开发的早期阶段,后训练和持续训练则可能在模型部署后进行。

Pre-training(预训练):通常发生在模型开发的早期阶段。目的是在大规模数据集上学习通用特征,为后续任务奠定基础。不针对特定任务,而是追求广泛的适用性。

Post-training(后训练):发生在预训练之后,模型部署前或部署初期。针对特定的任务或数据集进行额外训练,以优化模型性能。可以包括Fine-tuning(微调)和Reinforcement Learning from Human Feedback(RLHF,人类反馈的强化学习)等方法。

Continue training(持续训练):可能在模型部署后的任何阶段进行。目的是不断适应新数据,保持模型性能的稳定和提升。持续训练可以包含后训练作为其中的一个阶段。

  • 数据使用: 预训练使用广泛的数据集来学习通用特征,后训练和持续训练则使用更具体或更新的数据。

Pre-training:使用广泛的数据集,追求数据的多样性和规模。Post-training:使用更具体或更新的数据,针对特定任务进行优化。Continue training:不断引入新数据,保持模型的时效性和准确性。

  • 目标任务: 预训练不针对特定任务,而后训练和持续训练则针对特定的应用或任务进行优化。

Pre-training:不针对特定任务,而是学习通用的语言特征和结构。Post-training:针对特定的应用或任务进行优化,如医疗咨询、金融分析等。Continue training:保持模型的通用性,同时适应特定任务的变化。

  • Post-training和SFT、RLHF的关系: 后训练通常指的是在一个模型预训练(Pre-training)之后,针对特定的任务或数据集进行的额外训练。这个阶段可以包括Fine-tuning(微调)和Reinforcement Learning from Human Feedback(RLHF,人类反馈的强化学习)等方法。

  • Post-training和Continue Training的关系: 持续训练可以包含后训练作为其中的一个阶段。例如,一个模型可能首先在大量数据上进行预训练,然后进行后训练以适应特定任务,之后进入持续训练阶段,不断在新数据上进行训练以保持其性能。

4.3 举例说明

假设一个语言模型在大规模文本数据集上进行了预训练,学习了语言的基本结构和语义。之后,为了使模型更好地回答特定领域的问题,如医疗咨询,开发者可能会在医疗领域的数据上进行后训练,这包括了SFT和RLHF等方法来进一步提升模型的领域特定性能。

随后,模型部署到实际应用中,为了保持其回答质量并适应用户提问方式的变化,模型会进入持续训练阶段,不断在新的用户互动数据上进行训练。这样,模型不仅在最初部署时表现良好,而且能够持续适应环境变化,保持其长期的有效性和相关性。

5 监督训练


在监督学习中(也称为从演示中学习或“指令微调”),我们会收集一组人类编写的文本,这些文本以问题或指令的形式出现,并包含了期望的输出。例如,这些文本可以是某一问题和答案,或者是像带有人类编写总结的summarize the following text {text}这样的任务。通过在相同的“给定前缀预测下一个token”的目标上继续训练模型,但这次是在指令-输出对集合上,模型学会通过执行指令来响应。即模型接收到给定问题的正确输出的演示,并学会复制输出结果。我们希望通过这种方式将其泛化到训练中尚未出现的问题中去。

6 自监督学习


大型语言模型本质上就是神经网络,也就是一种机器学习的方法。机器学习中的监督学习需要人类帮助标注数据。然而遗憾的是,ChatGPT 底层的大型语言模型参数如此的多,如果使用监督学习,必然需要大量的人类标记数据,这几乎是不可能的。自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息训练模型,从而学习到对下游任务有价值的表征。

7 自回归模型


GPT 是如何在人类的文本数据上实现自监督学习?用一句话就可以讲明白:用文本的前文来预测后文。

8 PT、SFT


在大模型领域,PT和SFT分别代表预训练(Pre-training)和监督微调(Supervised Fine-tuning)。这两个概念通常用于构建和优化深度学习模型,特别是自然语言处理(NLP)领域的模型。

  • 预训练(Pre-training,简称PT):预训练是一种无监督学习方法,模型通过大量无标签数据进行训练,以捕捉数据的底层结构和模式。在自然语言处理领域,预训练模型通常学习词汇、语法和句子结构等基本特征。预训练的目的是让模型学会一定程度的通用知识,为后续的微调阶段打下基础。

  • 监督微调(Supervised fine-tuning,简称SFT):微调是一种有监督学习方法,通过在有标签数据上对预训练模型进行进一步训练,以适应特定的任务。这个过程使得模型能够利用预训练阶段学到的通用知识,结合新数据的标签信息,使模型在特定任务上表现更好。

9 上下文学习


对于大型语言模型来说,即需要大量的数据标记成本,也需要算力成本和时间成本。然而,不同场景下任务的需求是不一样的,不可能根据每个任务都去微调模型。能否不进行微调就让模型学习完成不同的任务呢?答案是可以的,这个神奇的技术称为 上下文学习 (In Context Learning)。它的实现非常简单,只需要给到模型一些引导,将一些事先设定的文本输入到大型语言模型中,就像手把手教人学会某项技能一样,大型语言模型就能神奇的学习到如何处理后续的新任务。遗憾的是,为什么大型语言模型具有上下文学习的能力仍然是一个迷,业内把这个能力称为“涌现”。

思维链


“思维链”是指在思考问题或探索主题时,一个思想引发另一个思想,形成一系列相互关联的思维环节。这种思维过程可以是线性或非线性的,通过连接和扩展思想,帮助我们更全面地理解问题,促进创新性思考,思维链是认知过程中的重要组成部分。

强化学习(RL)


在强化学习中,我们为模型提供指令,但并不提供人工编写的答案。模型需要自己生成答案。评分机制(例如人类)会读取生成的答案,并告诉模型这些答案的质量,模型的目标是如何回答以获得高分。

P- Tuning


是GPT模型微调中的一种技术,是在Fine-tuning方法基础上进行改进而形成的一种参数高效的微调方法。P-tuning只有少量参数参与训练,训练计算复杂度相对较小,适合少数据量场景。它的原理是将人工提示词模板转换成可学习的连续向量,通过下游任务的学习来优化连续向量,从而自动学出好的自动提示模板。

LoRA


假设有一个预训练好的语言模型,包含了大量的预训练好的参数。现在要使用这个模型来解决一个特定的下游任务,例如情感分析。为了适应这个特定的任务,需要微调模型。

使用LoRA方法,首先将预训练模型的参数冻结,即保持不变。然后,在冻结的预训练模型之上,添加一些新的层,这些层将用于适应新的任务。例如,可以添加一个分类器层,用于将文本分类为正面或负面情感。在这个过程中,只有新添加的层的参数将被训练,而预训练模型的的其他参数将被保持不变。这样,只需要训练一小部分参数,就可以快速微调模型,同时保持了预训练模型的性能。因此,LoRA方法可以在不增加模型大小和计算成本的情况下,实现更好的模型性能和更快的训练速度。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

<think>嗯,用户想了解如何训练一个大模型。这个问题挺大的,我需要先理清思路,分步骤解释。首先,可能得从基本概念开始,比如什么是大模型,然后逐步展开训练流程。不过用户可能已经有一定了解,所以需要平衡深度和易懂性。 首先,大模型训练通常涉及多个阶段,比如数据准备、模型架构选择、预训练、微调、评估和部署。每个阶段都有需要注意的地方。比如数据方面,要强调质量和多样性,还有预处理的重要性。模型架构部分,可能需要介绍Transformer,因为现在主流的大模型都基于它。 然后,计算资源是个大问题。用户可能想知道需要多少GPU,分布式训练的方法,比如数据并行、模型并行。这里可能需要简单解释这些概念,但不用太技术化。 预训练阶段,目标函数比如语言模型的自回归预测,或者BERT的掩码语言模型。这部分需要简明扼要,避免太深入数学细节。微调部分可以分几种类型,比如指令微调、领域适应,还有不同的微调技术,如LoRA,这样用户能知道有这些方法存在。 评估部分要提到常见的基准测试,比如GLUE、SuperGLUE,以及人工评估的重要性。部署方面,推理优化和持续学习可能需要提及,但可能用户更关注训练过程,这里可以简略。 另外,挑战部分也很重要,比如计算成本、数据偏差、伦理问题。用户可能想知道这些实际问题,帮助他们全面了解。 需要确保回答结构清晰,分步骤讲解,每个步骤下有子点。同时注意使用中文,LaTeX格式正确,行内公式用$...$,独立公式用$$...$$。比如提到损失函数时用$L = -\sum \log P(y_i|x)$,这样符合格式要求。 还要检查是否有遗漏的关键点,比如数据安全、模型压缩技术,或者最新的方法如混合专家模型(MoE)。可能需要适当提到,但不过于深入。 最后,确保语言通俗易懂,避免过多术语堆砌,同时保持专业性。可能需要用类比或例子帮助理解,比如在解释分布式训练时,可以比喻为分工合作。 总结下来,回答的结构应该是:简介、训练流程分步骤详细说明、挑战与注意事项、总结。每个步骤下再细分关键点,用项目符号列出,保持层次分明。</think>训练一个大模型(如GPT、BERT等)是一个复杂且资源密集的过程,涉及多个关键步骤和技术。以下是分阶段说明: --- ### 一、训练大模型的核心流程 1. **数据准备** - **数据收集**: 需要大规模、多样化的数据集(如网页文本、书籍、论文、对话记录等)。例如,GPT-3使用了约45TB的原始文本。 - **预处理**: - 清洗数据(去重、过滤低质量内容) - 分词(Tokenization,如使用Byte-Pair Encoding) - 构建训练样本(如滑动窗口截取文本片段) 2. **模型架构设计** - **选择基础结构**:主流大模型基于Transformer架构,例如: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - **参数规模**:模型参数量通常在亿级到万亿级(如GPT-3有1750亿参数),需设计层数、注意力头数等超参数。 3. **分布式训练** - **硬件需求**:需高性能GPU/TPU集群(如数千张A100 GPU)。 - **并行策略**: - **数据并行**:多设备同时处理不同数据批次 - **模型并行**:将模型拆分到不同设备(如张量并行、流水线并行) - **混合并行**:结合数据与模型并行(如Megatron-LM) 4. **预训练(Pretraining)** - **目标函数**:通过自监督学习预测文本片段。例如,语言建模任务的目标是最大化: $$ L = -\sum_{t=1}^T \log P(x_t | x_{<t}) $$ - **优化策略**: - 使用AdamW优化器,设置学习率衰减 - 梯度裁剪防止梯度爆炸 5. **微调(Fine-tuning)** - **任务适配**:在预训练模型基础上,用特定领域数据(如医疗、法律)或任务数据(如问答、翻译)进行微调。 - **高效微调技术**: - **LoRA**:仅训练低秩适配矩阵,冻结原参数 - **Prompt Tuning**:通过提示词调整模型行为 6. **评估与验证** - **基准测试**:使用GLUE、SuperGLUE等评估通用能力,或领域专用测试集(如医学QA)。 - **人工评估**:对生成结果进行流畅性、逻辑性评分。 --- ### 二、关键技术与挑战 1. **计算资源** - 训练万亿参数模型需数百万美元算力成本(如GPT-3训练成本约460万美元)。 2. **数据质量与偏差** - 数据中的偏见可能导致模型输出歧视性内容,需通过数据平衡和去偏算法缓解。 3. **稳定性问题** - 大规模训练易出现梯度不稳定,需采用LayerNorm、残差连接等技术。 4. **伦理与安全** - 需对齐(Alignment)技术(如RLHF)确保模型符合人类价值观。 --- ### 三、典型工具与框架 - **深度学习框架**:PyTorch、TensorFlow(需定制分布式训练逻辑) - **训练库**:DeepSpeed(微软)、Megatron-LM(NVIDIA) - **云平台**:AWS、Google Cloud、Azure(提供弹性算力) --- ### 四、总结 训练大模型需系统性解决数据、算法、算力三方面问题,同时需持续优化训练效率和模型安全性。随着技术发展,参数高效微调(如LoRA)和模型压缩(如量化、蒸馏)正成为降低部署成本的关键方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值