提示词规则
零样本提示
可在没有提供任何示例的情况下,直接指示模型完成任务的方法。核心思想是,凭借大模型在海量数据中学习到的通用知识和能力,直接理解任务要求并给出正确的答案。
案例
# prompt``将情绪分类为中性、负面或正面。``文本:我今天太开心了!``情感:
少样本提示
利用大型语言模型 (LLM) 的能力,通过在提示词中提供少量示例,来引导模型完成特定任务的方法。与零样本提示不同,少样本提示通过示例来帮助模型理解任务的模式和规则,进而更准确地生成符合要求的输出。
案例
# prompt``“whatpu”是坦桑尼亚的一种小型毛茸茸的动物。``一个使用whatpu这个词的句子的例子是:我们在非洲旅行时看到了这些非常可爱的whatpus。`` ``“farduddle”是指快速跳上跳下。``一个使用farduddle这个词的句子的例子是:
链式思考(COT)提示
通过在提示词中引导大型语言模型 (LLM) 逐步进行推理,来解决复杂问题。CoT 提示鼓励模型一步一步地思考,模拟人类的推理过程,从而提高多步推理和逻辑分析类任务的表现。
案例
# prompt``这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。``A:将所有奇数相加(9、15、1)得到25。答案为False。``这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。``A:
更夸张的是,只需要把**「让我们逐步思考」加入进去,就可以起效。这种称之为「零样本** COT 提示」。
# 反面案例``# prompt``我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?``# output``1个苹果`` ``# 利用COT得到正确答案``# prompt``我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?``让我们逐步思考。``# output``首先,您从10个苹果开始。``您给了邻居和修理工各2个苹果,所以您还剩下6个苹果。``然后您买了5个苹果,所以现在您有11个苹果。``最后,您吃了1个苹果,所以您还剩下10个苹果。
现在很多模型已经暗含了 COT 模式,分析非常细。
检索增强生成(RAG)
通过结合外部知识库的检索和大型语言模型 (LLM) 的生成能力,来提高LLM在知识密集型任务上的表现。
RAG 先从外部知识库中检索相关信息,然后利用检索到的信息进行生成,从而实现与事实更加一致,生成的答案更可靠,还有助于缓解「幻觉」问题。
案例
使用 LangChain 构建 RAG(检索增强生成)应用:https://python.langchain.com/docs/tutorials/rag/
主要包括以下步骤:
加载文档 (Loading documents): 从各种来源加载数据,例如文本文件,网页等。``分割文本 (Splitting text): 将文档分割成更小的文本块,以便于检索。``创建向量嵌入 (Creating embeddings): 将文本块转换为向量表示,以便于计算相似度。``存储向量 (Storing vectors): 将向量存储到向量数据库中,以便于快速检索。``检索相关文档 (Retrieving relevant documents): 使用用户的查询从向量数据库中检索相关的文本块。``利用LLM生成答案 (Generate answer with LLM): 将检索到的文本块和用户查询组合成提示,并使用 LLM 生成最终答案。
自我反思 Reflexion
通过让大型语言模型 (LLM) 对其自身的输出进行反思和迭代,来提高LLM在复杂任务上的表现。反思提示鼓励模型先生成一个初步答案,然后对该答案进行评估和反思,再反思结果进行改进,迭代生成最终的答案。
案例
除了上述 5 个规则,还有 12 个重要的规则如下:
-
自我一致性
-
生成知识提示
-
prompt chaining
-
思维树(TOT)
-
自动推理并使用工具(ART)
-
自动提示工程师
-
主动提示
-
方向性刺激提示
-
PAL程序辅助语言模型
-
ReAct框架
-
多模态思维链提示
-
基于图的提示
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈