企业级大模型部署指南:Ollama、vLLM 和 LMDeploy,各有千秋!

一、Ollama、vLLM 和 LMDeploy介绍

Ollama、vLLM 和 LMDeploy 都是与大语言模型相关的工具或框架,以下是它们的具体介绍:

Ollama

  • 简介:一个轻量级的模型托管框架,可在本地环境中运行和管理 LLM 模型。基于 Go 语言开发,集成了模型管理与交互界面,采用 MIT 许可。

  • 适用场景:适用于个人开发者测试、教育场景以及轻量应用,比如在 MacBook Pro(M3 芯片)等移动设备上调试,快速构建原型应用,或者在树莓派 5 + 外置 GPU 扩展坞等低功耗场景下使用。

vLLM

  • 简介4:高效的大型语言模型推理和部署框架,由加州大学伯克利分校开发,采用 Apache 2.0 许可,以 Python/PyTorch 为基础,优化了显存管理与批处理。

  • 适用场景:适用于高并发在线服务,如智能客服、批量生成等场景,以及单节点多 GPU 推理或中小规模云原生部署,对社区模型(如 LLaMA 系列)兼容性更优。

LMDeploy

LMDeploy 是一个高效且友好的 LLMs 模型部署工具箱,功能涵盖了量化、推理和服务。上海一家企业开发。LMDeploy 工具箱提供以下核心功能:

  • 高效的推理: LMDeploy 开发了 Persistent Batch(即 Continuous Batch),Blocked K/V Cache,动态拆分和融合,张量并行,高效的计算 kernel等重要特性。推理性能是 vLLM 的 1.8 倍
  • 可靠的量化: LMDeploy 支持权重量化和 k/v 量化。4bit 模型推理效率是 FP16 下的 2.4 倍。量化模型的可靠性已通过 OpenCompass 评测得到充分验证。
  • 便捷的服务: 通过请求分发服务,LMDeploy 支持多模型在多机、多卡上的推理服务。
  • 有状态推理: 通过缓存多轮对话过程中 attention 的 k/v,记住对话历史,从而避免重复处理历史会话。显著提升长文本多轮对话场景中的效率。
  • 卓越的兼容性: LMDeploy 支持 KV Cache 量化, AWQ 和 Automatic Prefix Caching 同时使用。

二、Ollama部署大模型

ollama一般是在个人电脑、服务器显存等配置较低的环境中,部署量化后的大模型。部署简单,但大模型都是量化后的(阉割版),其效果不怎么好。所以,一般来说,企业中不会采用Ollama部署大模型。

下载和安装

下载地址:https://ollama.com/

服务器环境:支持windows,Linux,MacOS 。Linux服务器首推 Ubuntu 。

三、vLLM部署大模型

vLLM和LMDeploy是企业级部署大模型最常用的。 社区都很活跃。vLLM对服务器显存版本有很高的要求。

img

官网文档:

https://docs.vllm.ai/en/latest/

中文文档(非官方):

https://vllm.hyper.ai/docs/getting-started/installation

cuda要求

vLLM contains pre-compiled C++ and CUDA (12.1) binaries.

软件环境要求

  • OS: Linux
  • Python: 3.9 – 3.12
  • GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, H100, etc.)

创建Python环境

#Create a new conda environment.conda create -n vllm python=3.12 -yconda activate vllm

安装vLLM

#Install vLLM with CUDA 12.4.pip install vllm # If you are using pip. 

运行本地大模型

1、下载NLP大模型。

推荐大模型 qwen,llama,glm 。我们拿qwen2.5-0.5b来做测试。使用python语言调用模塔社区的大模型。

大模型网址:

https://modelscope.cn/models/Qwen/Qwen2.5-0.5B-Instruct/

# pip install modelscope#模型下载到本地。from modelscope import snapshot_downloadmodel_dir = snapshot_download('Qwen/Qwen2.5-0.5B-Instruct',cache_dir="/root/autodl-tmp/llm")

cache_dir一定要指定绝对路径。

2、vLLM运行大模型

sh命令:

vllm serve /root/autodl-tmp/llm/Qwen/Qwen2.5-0.5B-Instruct

测试:

from openai import OpenAIclient = OpenAI(    base_url="http://localhost:8000/v1",    api_key="token-abc123",)completion = client.chat.completions.create(  model="/root/autodl-tmp/llm/Qwen/Qwen2.5-0.5B-Instruct",  messages=[    {"role": "user", "content": "请使用java编写冒泡排序!"}  ])print(completion.choices[0].message)

其中vLLM的端口号是8000,model的值为模型的绝对路径。

四、LMDeploy部署大模型

LMDeploy是后起之秀,个人非常推荐这款软件。功能全面强大,符合国人使用习惯。对硬件的要求比vLLM低。

img

github地址:

https://github.com/InternLM/lmdeploy

官方文档:

https://lmdeploy.readthedocs.io/zh-cn/latest/

img

安装LMDeploy

conda create -n lmdeploy python=3.8 -yconda activate lmdeploypip install lmdeploy

运行本地大模型

sh命令:

pip install partial_json_parser
lmdeploy serve api_server /root/autodl-tmp/llm/Qwen/Qwen2.5-0.5B-Instruct --server-port 23333

–server-port 23333 指明端口号是23333 ,大模型路径要是绝对路径。

api_server 启动时的参数可以通过命令行lmdeploy serve api_server -h查看。 比如,–tp 设置张量并行,–session-len 设置推理的最大上下文窗口长度,–cache-max-entry-count 调整 k/v cache 的内存使用比例等等。

五、使用远程算力服务器

一般来说,我们都会使用算力云服务器进行部署大模型,以及训练、微调大模型。而本地的开发工具一般推荐使用VSCode 。VSCode有一个特强好用的端口转发功能,方便将服务器上的端口映射到本地。

img

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

大模型就业发展前景

根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
在这里插入图片描述字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
在这里插入图片描述
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。

最后

大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值