“ 高效,准确的提示词是使用好模型的基础。”
做了这么久的大模型应用开发,慢慢发现其实做大模型应用的核心或者说所有技术其实都围绕着一个点——让大模型更好的理解你的意图;而开发人员解决的核心问题是——怎么让大模型更准确的理解你的意图。
作者曾不止一次地说过,用户与模型打交道的唯一桥梁就是提示词,这也是大模型应用的核心。
而一个标准的提示词虽然有不同的模板,但肯定具备以下几个模块:
- 系统提示词
- 用户问题
- 参考内容
- 工具描述(智能体中)
- 示例数据
怎么让大模型更好的理解你的意图
所以现在拆开来看,提示词的每个模块都是做什么的?
系统提示词
系统提示词是用来指定模型的角色,由于模型的训练数据比较复杂,并且涉及领域比较广,因此它像一个无所不能的通才;但我们也知道,一个人什么都会也代表着什么都不会,因此需要告诉模型它擅长某个领域,这样它才能表现的更好。
用户问题
从理论上来说,用户的问题越精确,越有完善模型的效果会更好;但我们无法控制用户的行为,因此我们只能尽可能地去完善用户的问题,比如说问题改写。
参考内容
参考内容就是一些与用户相关的文档或数据,让模型能够更好的回答用户问题;一般是通过RAG的思想来实现。
工具描述
在智能体开发中,工具是必不可少的一环,但怎么才能让模型更好的理解工具的作用,然后去使用工具,这个就是工具描述需要做的事情。
工具描述不但要告诉模型,这个工具是干什么的,还有让模型知道怎么使用它;因此工具需要说明,其每个参数和响应也要进行说明。
最后,还有一个就是示例数据或示例问题和示例回答;简单来说就是少提示(few shot),通过案例来告诉模型,用户大概会怎么提问,模型需要怎么回答;这玩意就像学生时代的例题,有了例题模型就能更好地理解问题,进而回答问题。
所以说,大模型应用中的所有问题本质上都可以归纳为提示词问题;即怎么构建一个简单的,完整的,能够让大模型更好理解问题和使用工具的提示词。
而以作者的经验来说,大部分情况下你做的大模型应用效果不好的原因就是提示词(智能体中工具描述也属于提示词的一种)写的不好,不够准确。

总的来说,做大模型应用开发,你的提示词写的越精确,越完善效果就越好;就比如在上篇作者做数据分析的文章中介绍的一样,做数据分析,你要告诉模型你使用的数据库,库表结构,表以及每个字段的字段类型,准确注释,是否可空等。
在此基础之上,还要有示例数据,这样模型才能更好的处理你的问题;其实,这玩意说白了就和人一个样。
当然,模型本身也存在部分问题,比如说随着上下文的增长,模型的性能会呈断崖式下降;但这是模型目前普遍存在的问题,可能以后随着大模型技术的发展这个问题会逐渐得到解决。
但在今天,我们还是需要在C端解决问题,而无法去解决大模型的问题。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:

04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)

05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!

06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

3万+

被折叠的 条评论
为什么被折叠?



