今天给大家分享一下数据分析基础的一些学习笔记,希望对你有用。
生活中我们总能遇见一些喜欢说“我认为”、“我觉得”的人,不知道你们平时遇到这种人是什么感受呢?
在平时中还好,假如在工作中可能会被问的哑口无言,那么怎么解决这些“我认为”、“我觉得”这种问题呢?为了使我们的观点有足够的说服力,就需要用数据说话,用数据来论证你的观点,体现你观点的严谨性。这也是产品经理所要具备基础能力。这里就以产品经理岗位的角色讲解数据分析。
一、什么是数据分析
数据分析是对于一个问题一个完整的闭环研究过程,需要我们先确定数据分析的目标,即明确的目标性,确定目标后,需要进行数据的收集、整理、加工、分析,有了数据后需要在繁杂的数据中获取有价值的信息,通过这个信息能够帮助指导我们的产品决策。进行数据分析一定要有对比,有指标,这样我们的分析才不是纸上谈兵,这样才是有意义的。
二、数据分析的作用
(1)反应产品情况,数据反映出来的问题更为客观,告别“我认为”、“我觉得”。(2)发现产品问题,数据会将问题很直观的暴露出来。(3)寻找最佳决策,通过数据可以以最小的成本得到相对比较高的回报率,A/B测试可以帮助我们寻找最佳决策。(4)掌握产品生态,通过竞品分析,同行业之间的观察。(5)发现产品线索,可以通过数据反映出产品的留存趋势情况,为后续产品的迭代提供理论支撑。
三、数据分析的分类
数据分析共分为三种,(1)描述性分析,最常见的一种分析方法,将统计到的数据进行描述变成报告。充分利用可视化工具增强描述性分析所带来的信息;(2)诊断性分析,对日常数据的变化进行合理的解释,这是描述分析的下一步难题。从这个阶段开始,才刚刚进入真正的数据分析阶段;(3)预测性分析,根据数据的预测结果调整产品方案,预测性分析主要是进行预测。某事件在将来发生的可能性,预测一个可量化的值,或者是估计事情可能发生的某个时间点,这些都可以通过预测模型完成。
四、数据驱动产品设计
当我们推出一个新的产品功能的时候,是否是符合用户预期的,是否是受用户欢迎,我们需要通过数据来说话。主观认知总会有一些偏差,但是数据是不会说谎的。通过可量化的数据能够对新功能给予较为客观的反馈,从而驱动下一步的产品决策。

数据验证产品设计
,将我们的想法落地到产品中,产品的具体表现通过数据进行展现,数据回归到我们到想法中,通过数据可以去验证我们的产品想法是否符合我们的产品目标

数据决策产品设计 ,根据现有的数据反馈,产生设计解决方案,进行决策产品的下一步走向,开发上线后,通过数据验证我们的想法是否符合我们的预期。
五、怎么做数据分析
1.确定分析的内容,即需要先根据确定的目的,把它分解成若干个不同的分析要点,明确需要从那几个方面,哪几个点进行分析。
2.收集相关的数据,根据最初确定的目标和内容去收集相关、有用的数据外部数据和内部数据。
3.数据预处理,其主要包括数据清洗和数据加工。一般收集到的数据比较繁杂,没法直接使用。所以要对收集到的数据提前进行数据加工处理,从而形成适合数据分析的格式、样式。
4.数据预处理完成后才真正开始进入数据分析的实施阶段,根据之前确定的目标和内容,利用各种统计分析的方法,发现数据与数据的内部关系和规律,为产品迭代提供指导意义。
5.数据可视化,将分析的结果用图表的形式展现出来,可以更有效的、更直观的传达出数据与数据之间的关系,还对可视展示的内容进行解释,常用的图表包括饼图、折线图、柱形图、散点图、雷达图等,金字塔图、矩阵图、漏斗图、帕累托图(帕累托图是将出现的质量问题和质量改进项目按照重要程度依次排列而采用的一种图表。以意大利经济学家V.Pareto的名字而命名的。帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成)。
6.撰写数据报告,对整个数据分析过程的一个总结和呈现,主要目的是把分析的背景、过程、结果和建议完整地呈现出来,以供决策者展开,一定要给出明确的结论,因为有目的就一定要有结果(形成闭环)。
7.上线验证结论,设定了目标,最后就要验证目标,不然你永远都不知道自己做的对不对 。
8.数据分析复盘

六、数据分析必须知道的基本术语
1.指标
用于衡量事物发展程度的单位或方法,也是一种度量。例如:人口数、GDP、收入、用户数、利润率、留存率、覆盖率等。很多公司都有自己的KPI指标体系,就是通过几个关键指标来衡量公司业务运营情况的好坏。
2.纬度
是食物或现象的某种特种,如性别、地区、时间等都是纬度。其中时间是一种常用、特殊的纬度,通过时间前后的对比,就可以知道谁的发展是好是坏了,如用户数比上月增长10%,比去年同期增长20%,这就是时间上的对比,也称为纵比。另一个比较就是横比,如不同国家人口数、GDP的比较、不同省份的收入、用户数的比较、不同公司、不同部门之间的比较,这些都是同级单位之间的比较,简称横比。
3.均值、众数、中位数
均数即平均数的一般度量,能够利用所有已知信息,对异常值很敏感;中位数,高中学统计概率的时候也有学过,排序居于中间的位置;众数,出现最频繁的数值,代表分布中的高峰。
4.绝对数与相对数
绝对数,他是反映客观现象总体在一定时间、地点条件下的总规模、总水平的综合指标;相对数:指由两个联系的指标对比计算而得到的数值,它是用于反映客观现象之间的数量联系程度的综合指标。
5.百分比和百分点
百分比:表示一个数是另一个数的百分之几,也叫做百分率或百分数;百分点:指不同时间以百分数的形式表示的相对指标的变动幅度,1个百分点=1%。
6.频数与频率
频数是指一组数据中个别数据重复出现的次数;频率是每组类别次数与总次数的比值。
7.倍数与番数
倍数是一个数除以另一个数所得的商;番数是指原来数量的2的N次方。
8.比例与比率
比例是指总体中各部分的数值占全部数值的比重,通常反应总体的构成和结构
比率是指不同类别数值的对比,它反映的不是部分与整体之间的关系,而是一个整体中各部分之间的关系。
9.同比、环比、定基比
环比是指本期统计数据与上期比较;同比是指今年第n月与去年第n月比;定基比是指和某个基点进行比较 。
那么,我们该如何入门AI产品经理?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AGI大模型在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
以下是整个学习思路和方向👇
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作者 | 陈明,GrowingIO 联合创始人 & 运营副总裁。毕业于斯坦福大学,先后就职于 eBay、LinkedIn 数据分析部门,有丰富的商务分析经验。
随着人口和流量红利的下降,互联网行业必然会朝着精益化运营的方向发展。[数据分析](https://www.afenxi.com/bigdata/data-
analysis)在很多互联网人的工作中越发显得重要,而对于产品经理来说,更是如此。
本文将为产品经理介绍数据分析的基本思路,并基于此,衍生出 2 个常见方法和 7 个应用手段,希望在数据分析的实际应用中能给大家带来帮助。
一、数据分析的基本思路
数据分析应该以业务场景为起始思考点,以业务决策作为终点。
基本思路为 5 步,首先要挖掘业务含义、制定分析计划、从分析计划中拆分出需要的数据、再根据数据分析的手段提炼业务洞察,最终产出商业决策。
接下来我们用一个案例来具体说明这 5 步思路:
某国内 P2P 借贷类网站,市场部在百度和 hao123 上都有持续的广告投放,吸引网页端流量;最近内部同事建议尝试投放 Google 的
SEM;另外,也需要评估是否加入金山网络联盟进行深度广告投放。在这种多渠道的投放场景下,产品经理该如何进行深度决策?
1.?挖掘业务含义
首先要了解市场部想优化什么,并以此为核心的 KPI 去衡量。渠道效果的评估,最重要的是业务转化:对 P2P
类网站来说,是否『发起借贷』远远比『用户数量』重要。
所以无论是 Google 还是金山渠道,都要根据用户群体的不同,优化相应用户的落地页,提升转化。
2.?制定分析计划
以『发起借贷』为核心转化点,分配一定的预算进行流量测试,观察对比注册数量及 ROI 效果,可以持续观察这部分用户的后续价值。
3.?拆分查询数据
根据各个渠道追踪流量、落地页停留时间、落地页跳出率、网站访问深度以及订单类型数据,进行用户分群。
4. 提炼业务洞察
在不同渠道进行投放时,要根据 KPI
的变化,推测业务含义。比如谷歌渠道的效果不好,可能因为谷歌大部分的流量在海外,可能会造成转化率低。而金山网络联盟有很多展示位置,要持续监测不同位置的效果,做出最后判断。
5. 产出商业决策
最后根据数据洞察,指导渠道的投放决策制。比如停止谷歌渠道的投放,继续跟进金山网络联盟进行评估,而落地页要根据数据指标持续地进行优化。
二、常见的数据分析方法
(一)内外因素分解法
内外因素分解法是把问题拆成四部分,包括内部因素、外部因素、可控和不可控,然后再一步步解决每一个问题。
社交招聘类网站,一般分为求职者端和企业端,向企业端收费方式之一是购买职位的广告位。业务端人员发现『发布职位』数量在过去的 6 个月里有缓慢下降的趋势。
对于这类某一数据下降的问题,从产品经理的角度来说,可以如何拆解?
根据内外因素分解法分析如下:
1.内部可控因素
产品近期上线更新、市场投放渠道变化、产品粘性、新老用户留存问题、核心目标的转化;
2.外部可控因素
市场竞争对手近期行为、用户使用习惯的变化、招聘需求随时间的变化;
3. 内部不可控因素
产品策略(移动端/PC端)、公司整体战略、公司客户群定位(比如只做医疗行业招聘);
4. 外部不可控因素
互联网招聘行业趋势、整体经济形势、季节性变化;
(二)DOSS
DOSS 是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化解决方案的方式。
某在线教育平台,提供免费课程视频,同时售卖付费会员,为付费会员提供更多高阶课程内容。如果我想将一套计算机技术的付费课程,推送给一群持续在看 C++
免费课程的用户,产品经理应该如何辅助分析?
按 DOSS 的思路分解如下:
1. 具体问题
预测是否有可能帮助某一群组客户购买课程。
2. 整体
首先根据这类人群的免费课程的使用情况进行数据分析,之后进行延伸,比如对整体的影响,除了计算机类,对其他类型的课程都进行关注。
3. 单一回答
针对该群用户进行建模,监控该模型对于最终转化的影响。
4. 规模化
之后推出规模化的解决方案,对符合某种行为轨迹和特征的行为进行建模,将课程推荐模型加入到产品设计中。
三、数据分析的应用手段
根据基本分析思路,常见的有 7 种数据分析的手段。
(一)画像分群
画像分群是聚合符合某中特定行为的用户,进行特定的优化和分析。
比如在考虑注册转化率的时候,需要区分移动端和 Web 端,以及美国用户和中国用户等不同场景。这样可以在渠道策略和运营策略上,有针对性地进行优化。
(二)趋势维度
建立趋势图表可以迅速了解市场, 用户或产品特征的基本表现,便于进行迅速迭代;还可以把指标根据不同维度进行切分,定位优化点,有助于决策的实时性;
(三)漏斗洞察
通过漏斗分析可以从先到后的顺序还原某一用户的路径,分析每一个转化节点的转化数据;
所有互联网产品、数据分析都离不开漏斗,无论是注册转化漏斗,还是电商下单的漏斗,需要关注的有两点。第一是关注哪一步流失最多,第二是关注流失的人都有哪些行为。
关注注册流程的每一个步骤,可以有效定位高损耗节点。
(四)行为轨迹
行为轨迹是进行全量用户行为的还原。只看 PV、UV
这类数据,无法全面理解用户如何使用你的产品。了解用户的行为轨迹,有助于运营团队关注具体的用户体验,发现具体问题,根据用户使用习惯设计产品,投放内容;
(五)留存分析
留存是了解行为或行为组与回访之间的关联,留存老用户的成本要远远低于获取新用户,所以分析中的留存是非常重要的指标之一;
除了需要关注整体用户的留存情况之外,市场团队可以关注各个渠道获取用户的留存度,或各类内容吸引来的注册用户回访率,产品团队关注每一个新功能对于用户的回访的影响等。
(六)A/B 测试
A/B 测试是对比不同产品设计/算法对结果的影响。
产品在上线过程中经常会使用 A/B 测试来测试产品效果,市场可以通过 A/B 测试来完成不同创意的测试。
要进行 A/B 测试有两个必备因素:
1.有足够的时间进行测试;
2.数据量和数据密度较高;
因为当产品流量不够大的时候,做 A/B 测试得到统计结果是很难的。而像 LinkedIn 这样体量的公司,每天可以同时进行上千个 A/B 测试。所以 A/B
测试往往公司数据规模较大时使用会更加精准,更快得到统计的结果。
(七)优化建模
当一个商业目标与多种行为、画像等信息有关联性时,我们通常会使用数据挖掘的手段进行建模,预测该商业结果的产生;
例如:作为一家 SaaS
企业,当我们需要预测判断客户的付费意愿时,可以通过用户的行为数据,公司信息,用户画像等数据建立付费温度模型。用更科学的方式进行一些组合和权重,得知用户满足哪些行为之后,付费的可能性会更高。
以上这几种数据分析的方法论,仅仅掌握单纯的理论是不行的。产品经理们需要将这些方法论应用到日常的数据分析工作中,融会贯通。同时学会使用优秀的数据分析工具,可以事半功倍,更好的利用数据,实现整体增长。
那么,我们该如何入门AI产品经理?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AGI大模型在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
以下是整个学习思路和方向👇
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。