大模型研发全揭秘:如何提升AI系统数据质量?数据清洗与预处理的关键步骤与案例解析!

在大模型系统的研发过程中,数据清洗和预处理是影响模型表现的关键步骤。高质量的数据不仅能提升模型的准确性和稳定性,还能显著降低研发成本和时间。本文以客服系统为背景结合具体案例,详细介绍如何处理客服系统中的缺失值、重复值和异常值,并提供技术细节和常见问题的解决方案。无论你是AI领域的新手,还是有经验的从业者,都能从中获得宝贵的知识和实践经验。

一、处理缺失值:客服对话数据的清洗

1.1 缺失值的类型及其影响

在客服系统中,数据的缺失是一种常见现象,通常包括未填写的客户反馈评分、遗漏的客户身份信息、丢失的对话记录等。根据缺失值的产生原因,缺失值一般分为以下三类:

  • 完全随机缺失(MCAR):缺失值的出现与数据集中任何已知或未知的变量都没有关系。

  • 随机缺失(MAR):缺失值的出现与一个或多个已知变量有关,但与缺失值本身的具体值无关。

  • 非随机缺失(MNAR):缺失值的出现与它本身的值有关,例如客户不满意时更可能不提交反馈评分。

在客服系统中,处理这些缺失值非常重要,因为它们会影响数据的完整性和模型的准确性。

1.2 删除包含缺失值的记录

删除包含缺失值的记录是最简单的一种处理方式。此方法适用于以下场景:

  • 缺失值比例较低:当缺失值占比小于总体数据的5%时,删除这部分数据通常不会对整体数据分布产生明显影响。

  • 重要字段缺失:某些字段(如客户的满意度评分)对于模型的训练至关重要,如果这些字段缺失,则这条记录的价值会大大降低,直接删除是合理的选择。

案例实践:

假设我们有一个客服对话数据集,其中部分对话记录缺失了客户的满意度评分。为了确保模型能够学习到有效的客户反馈信息,我们可以删除这些缺失评分的记录:

import pandas as pd

# 读取客服对话数据
data = pd.read_csv('customer_service_data.csv')

# 删除缺失满意度评分的记录
data_cleaned = data.dropna(subset=['satisfaction_score'])

注意事项: 尽管删除缺失值是一种简单有效的处理方式,但在缺失值比例较高的情况下,大量删除记录可能会导致数据量不足,进而影响模型的泛化能力。

1.3 用特定值填充缺失值

当缺失值的比例较高或删除记录会导致数据量严重不足时,可以选择用特定值填充缺失值,如列的均值、中位数或众数。这种方法特别适合在以下情况使用:

  • 数据分布较稳定:当某一字段(如年龄、收入)的值在总体数据中分布较为稳定时,可以用均值或中位数填充缺失值。

  • 缺失数据相对随机:如果缺失值的产生没有明显的模式或偏向性,填充后不会对数据整体分布产生显著影响。

案例实践:

在客服对话记录中,某些客户的身份信息(如年龄、性别)可能会缺失,但这些信息对模型的分类和个性化服务非常重要。我们可以选择用众数或平均值填充这些缺失值:

# 用众数填充缺失的年龄信息
data['age'].fillna(data['age'].mode()[0], inplace=True)

# 用平均值填充缺失的反馈评分
data['feedback_score'].fillna(data['feedback_score'].mean(), inplace=True)

常见问题: 在填充缺失值时,尤其是使用均值填充时,需谨慎处理异常值(如极端的高龄或高评分),否则会使得填充值偏离数据的真实分布。此外,填充后可能掩盖数据的本质特征,影响模型的预测能力。

二、处理重复值:合并和清理冗余数据

2.1 重复值的影响与识别

在客服系统的数据中,重复值通常表现为同一客户的多次相似反馈、重复的对话记录等。这些重复值不仅会占用存储空间,还可能导致模型对某些样本的过度拟合,从而降低模型的泛化能力。因此,合理处理重复值对于提高数据质量和模型的表现至关重要。

案例实践:

假设我们有一份客户反馈数据集,其中部分记录来自同一客户的多次相似反馈。我们可以使用Pandas库来识别并删除这些重复记录:

# 查找并删除重复的反馈记录
feedback_data = pd.read_csv('feedback_data.csv')
feedback_data_no_duplicates = feedback_data.drop_duplicates(subset=['customer_id', 'feedback_content'])

注意事项: 在删除重复记录时,应确保保留最完整和最新的记录。对于部分重要的重复记录,也可以选择合并处理,而不是简单地删除。

三、处理异常值:识别和应对极端行为

3.1 异常值的定义与检测

异常值通常指那些远离数据集中其他观察值的记录,在客服系统中,异常值可能表现为客户异常长时间的对话、极端高的投诉频率或异常的反馈评分等。处理这些异常值有助于提高模型的稳健性,防止模型对异常数据过度拟合。

3.2 基于IQR法的异常值处理

四分位距法(Interquartile Range, IQR)是一种常用的异常值检测方法,适用于数据分布较为均衡的场景。IQR通过计算数据的第一四分位数(Q1)和第三四分位数(Q3)来确定异常值的边界。

案例实践:

假设我们在客服系统中收集了对话时长数据,我们可以使用IQR方法来检测并移除异常长的对话记录:

# 读取对话时长数据
conversation_data = pd.read_csv('conversation_data.csv')

# 计算四分位数和IQR
Q1 = conversation_data['duration'].quantile(0.25)
Q3 = conversation_data['duration'].quantile(0.75)
IQR = Q3 - Q1

# 过滤掉对话时长异常的记录
conversation_data_no_outliers = conversation_data[~((conversation_data['duration'] < (Q1 - 1.5 * IQR)) | (conversation_data['duration'] > (Q3 + 1.5 * IQR)))]

常见问题: IQR方法对长尾分布的数据可能不太有效。在这种情况下,IQR可能会标记一些有价值的长对话数据为异常,从而误导模型的训练。因此,在使用IQR法时,应结合数据的具体分布特点进行判断。

3.3 使用Z-Score法检测极端反馈评分

Z-Score方法通过标准化数据来识别异常值,尤其适用于数据接近正态分布的场景。Z-Score衡量的是数据点与平均值之间的距离,通常,Z-Score绝对值超过3的点被视为异常值。

案例实践:

在客户反馈评分中,如果评分数据接近正态分布,我们可以使用Z-Score方法识别并处理极端反馈评分:

# 读取对话时长数据
conversation_data = pd.read_csv('conversation_data.csv')

# 计算四分位数和IQR
Q1 = conversation_data['duration'].quantile(0.25)
Q3 = conversation_data['duration'].quantile(0.75)
IQR = Q3 - Q1

# 过滤掉对话时长异常的记录
conversation_data_no_outliers = conversation_data[~((conversation_data['duration'] < (Q1 - 1.5 * IQR)) | (conversation_data['duration'] > (Q3 + 1.5 * IQR)))]

注意事项: Z-Score法假设数据服从正态分布,对于偏态或多峰分布的数据,效果可能不佳。因此,在应用此方法前,应对数据分布进行适当的探索和分析。

四、总结

数据清洗和预处理是客服系统研发中不可或缺的步骤,通过合理处理缺失值、重复值和异常值,可以显著提高数据质量,从而为后续的模型训练和评估奠定坚实的基础。在实际操作中,不同的数据集有不同的特性,选择适合的清洗方法并结合具体数据集的特点,才能最大限度地发挥数据的价值。无论你是刚入门的AI新手,还是经验丰富的从业者,希望本文能为你的大模型研发提供有益的参考。如果你在实际操作中遇到问题或有更多的经验想要分享,欢迎在评论区留言交流。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值