Hugging Face
Hugging Face Transformers是一个开源的预训练模型库,旨在将NLP领域的最新进展向更广泛的机器学习社区开放。该库包含了经过精心设计的最先进的Transformer架构,并提供了易于使用的API**,使得研究人员和开发者能够轻松地加载、微调和使用这些模型。**
Hugging Face Transformers
一、Hugging Face Transformers
Hugging Face Transformers是什么?Hugging Face Transformers是一个强大的Python库**,最初被创建用于开发语言模型,如今它的功能已经扩展到包括多模态(如图像和文本结合)、计算机视觉和音频处理等其他用途的模型。这意味着,除了处理语言数据之外,Hugging Face Transformers还能处理图片和声音数据,使其成为一个多功能的工具库。**
Hugging Face Transformers
该库提供了各种预训练模型,如BERT、GPT-2、RoBERTa、T5等,并支持Pytorch和Tensorflow2.0框架,其设计目标是提供一个易于使用且灵活的接口,以便研究人员和开发人员能够轻松地使用预训练模型。
-
提供了大量的预训练模型: 这些模型已经在庞大的数据集上进行过训练,可以直接使用,帮助用户节省了大量的时间和计算资源,让开发过程更加高效。
-
设计非常注重易用性: 详细的文档和简洁的API使得开发者可以快速上手,进行实验和开发。
-
会定期更新: 包含最新的研究成果和模型,用户可以及时获取和使用最前沿的技术,保持项目的先进性。
-
拥有一个活跃且热情的社区: 社区成员不断更新和维护这个库,提供技术支持和新功能。无论是初学者还是专家,都可以在社区中找到帮助和资源。
二、Hugging Face Hub
Hugging Face Hub是什么? Hugging Face Hub是一个面向机器学习开发者和协作者的社区平台,提供了大量的预训练模型、数据集以及机器学习应用。通过Hugging Face Hub库,用户可以轻松地下载、上传文件,管理存储库,运行推断,搜索资源,以及参与社区互动。****
Hugging Face Hub
Hugging Face Hub库的设计考虑到了易用性和功能性,它支持从Hub下载文件、上传文件到Hub、管理存储库、在部署的模型上运行推断、搜索模型和数据集等功能。此外,它还提供了丰富的API和命令行工具,使得用户可以方便地进行身份验证、创建存储库和上传文件。
-
模型开发与测试: 开发者可以使用库中的功能下载预训练模型进行本地测试和开发。
-
模型部署: 通过上传功能,开发者可以将自己的模型部署到Hugging Face Hub,供全球用户访问。
-
数据集管理: 用户可以上传和下载数据集,进行数据准备和预处理。
-
社区协作: 通过社区互动功能,用户可以分享自己的模型和数据集,与全球的机器学习社区进行交流和协作。
三、Transformers__核心功能模块
Hugging Face Transformers核心功能模块?** Hugging Face Transformers库的核心功能模块包括:Pipelines、Tokenizer、模型加载和保存。**
Transformers库提供高层API Pipelines简化模型使用,包含多种Tokenizer实现文本格式转换,以及支持模型加载与保存功能以促进模型复用与共享。
- Pipelines:这是Hugging Face Transformers提供的一个高层API,旨在简化模型的使用过程。通过Pipelines,用户可以轻松地执行各种任务,如文本分类、问答和文本生成等。这个简化的接口使得快速实践大模型变得更加容易,用户只需几行代码就能完成复杂的任务。
Pipelines
-
Tokenizer:Tokenizer是将文本转换为模型可处理的格式的工具。 Hugging Face Transformers提供了多种Tokenizer,支持不同的模型和语言。通过Tokenizer,用户可以轻松地对文本进行编码和解码,准备输入数据和处理输出结果,使得数据处理变得更加高效。
-
模型加载和保存:Hugging Face Transformers提供了加载和保存模型的功能,使得模型的使用和管理更加方便。用户可以从Hugging Face Hub加载预训练模型,也可以将自己训练的模型保存并分享给其他用户。这样,模型的复用和共享变得更加简单。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓