DeepSeek的热潮正在席卷整个金融行业。
证券公司率先部署,银行、基金等紧随其后。根据沙丘智库不完全统计,截止目前,共计46家金融机构宣布接入DeepSeek模型或完成本地化部署。
从应用场景上看,券商、基金等公司主要将DeepSeek模型用于投研投顾、产品销售、风控合规、客户服务与投教等核心业务场景;而银行出于安全合规方面的要求,多用于提升内部流程效率。
从应用效果上看,DeepSeek进一步证明了大模型的业务价值创造。例如,江苏银行利用识别结果结合外部数据等方式智能检测校验合同信息,对风险较高的交易提前发出预警,在利用DeepSeek模型优化后,识别及预警响应速度提升20%;国信证券在多个业务场景中进行了初步验证,结果显示,DeepSeek模型在智能问答、投资顾问、个股分析等多个领域表现出色,对比上一代开源模型,展现出了更大的业务融合潜力。
金融业一直是大模型应用的先锋部队。在《434个大模型案例,回顾2024年大模型落地进展]》中,沙丘智库观察到从行业分布上看,2024年大模型落地案例中金融行业占比最大(36.7%),金融机构积极探索金融科技赋能业务发展,将大模型作为未来核心的技术战略方向。
DeepSeek降低了模型训练的硬件成本和模型能力的技术门槛,将推动金融行业大模型应用的加速发展,尤其是对于中小金融机构而言。
但需要明晰的是,企业部署DeepSeek不等于实际的业务应用,试点应用的成功也不等于规模化扩展的成功。 距离广泛的大模型应用以及价值实现,仍然还有很长一段路要走。
面对DeepSeek带来的市场新变化,沙丘智库给企业的建议如下:
第一,成本下降趋势与业务规划。 在规划业务应用场景和优先级时,企业应预期训练和推理成本会持续下降。在过去的6-12个月中,大模型的价格已经呈现下降趋势,DeepSeek的定价策略更是推动了这一变化。尽管成本下降,企业不应仅仅因为价格变化就突然改变方向。 除非有明确的业务需求或能够显著改变业务模式,否则避免盲目构建自有大模型。投资AI应确保与企业的战略目标一致,并能够带来显著的竞争优势。
第二,部署大模型的总成本。 在计算大模型应用的ROI时,总成本不仅限于模型本身,还包括:应用开发和维护的初始及持续成本,数据及其管理成本,安全、治理和风险管理成本,业务转型和变革管理成本。虽然技术创新可能降低部分成本,但这些成本不会完全消失。
第三,利用DeepSeek带来的新机遇。 借助DeepSeek的发布,积极探索更可行、负担得起且透明的AI创新机会。大模型成本的下降可能催生以前不可行的新产品,将昂贵的POC项目转化为可行的产品。
第四,加速员工技能的培养与发展。 随着大模型成本下降,AI将更深度地融入产品和服务,对AI产品经理的需求将显著增长。一些工程师可能会承担更多产品管理的任务。企业应加速员工在AI技术、用户设计和市场分析方面的技能培养,以应对未来的需求。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓