前言
AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。
基础知识
- 大模型概述
定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。
应用:广泛应用于自然语言处理、图像识别、生成等领域。 - 学习大模型的意义
提升技术能力:掌握大模型技术,能够提升你的技术能力,并帮助你更好地理解数据科学和人工智能的原理。
职业机会:随着大模型在各个行业的应用越来越广泛,掌握这一技术将为你提供更多的职业机会。
学习建议
- 明确学习目标
确定你想要掌握的大模型技术和应用领域。 - 选择合适的资源
参考优质的大模型教程、书籍、视频等资源。 - 动手实践
不要仅停留在理论学习,要通过实际的项目和案例来加深理解。
实践指南
- 硬件环境准备
推荐配置:GPU(如NVIDIA GeForce或NVIDIA Tesla系列)、至少16GB RAM、足够的硬盘空间。 - 软件环境安装
安装适用于GPU的最新NVIDIA驱动、CUDA、PyTorch等必要工具库。 - 数据准备
收集和处理用于训练和验证大模型的数据集。 - 模型选择与训练
根据应用场景选择合适的预训练大模型或从头开始构建。
使用PyTorch等框架进行模型的训练和微调。 - 模型评估与优化
使用验证集对模型进行评估,并根据评估结果进行优化。 - 模型部署与应用
将训练好的模型部署到实际环境中,并应用于实际任务。
案例参考
- VisualGLM图文大模型
开源多模态模型,具备处理中英文对话和图像的能力。
拥有高达78亿参数,提供强大的语言和视觉处理能力。 - 本地AI大模型搭建
从零开始搭建本地AI大模型,需要准备GPU、CUDA、PyTorch等工具和库。
通过实践,了解如何配置硬件环境、安装软件工具、准备数据、训练模型等步骤。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓