部署本地大模型Ollama+Qwen2.5+Llama3.2

Ollama 是开源的一个AI项目,可以开发和运行大语言模型(Large Language Models, LLMs)。安装和部署容易,能够提供工具和技术来训练、微调和部署大规模的语言模型。Ollama拥有活跃的开发者社区和丰富的文档资源,通过这些资源学习,能够更好地理解和使用该AI模型工具。

通过Ollama下载阿里的Qwen和Llama模型文件,实现本机本地大模型使用。

一、下载安装

直接去官方网站,根据操作系统进行选择,因为我mac上安装了LM studio,就选择了windows 电脑来测试Ollama。

下载完成后,双击exe文件直接默认安装完成,并自动运行,右下角有图标提示。

下图第一个图标。

二、模型库文件的下载

直接进如windows命令行终端窗口

可以尝试使用ollama的命令,比如上图的list,列出系统里面下载过的模型文件。

常见的命令如下:

  • ollama list:显示模型列表、ollama show:显示模型的信息、ollama pull:拉取模型、ollama push:推送模型、ollama cp:拷贝模型、ollama rm:删除模型、ollama run:运行模型

选择需要的模型库进行下载,先选择千问2.5的模型库,官网,models下面有相关模型库文件的介绍和下载run命令。

内存32GB,我选择了14b,进行下载,大概9GB。

模型文件安装完成,测试一下,速度还不错。

接着安装Llama3.2模型文件

Ollama run Llama3.2 3B,开始下载模型文件

安装完成,测试一下

还不错,对话速度回复很快。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 部署Qwen 2.5模型至Ollama平台 #### 准备工作 为了顺利部署Qwen 2.5模型,在开始之前需确认已安装Docker并配置好GPU支持环境。对于拥有NVIDIA显卡的情况,建议预先设置好nvidia-docker以便能够充分利用硬件加速功能[^3]。 #### 下载与启动容器 通过指定官方仓库中的镜像来创建一个新的Docker容器实例用于运行Qwen 2.5模型服务: ```bash docker pull ghcr.io/ollama/qwen-2_5:latest docker run -d -p 8080:8080 --gpus all --name qwen-service \ -v /path/to/model/data:/app/backend/data \ --restart unless-stopped \ ghcr.io/ollama/qwen-2_5:latest ``` 上述命令会拉取最新版本的Qwen 2.5模型镜像,并将其作为后台进程启动,同时映射主机端口8080到容器内部的服务端口,允许外部访问API接口;`--gpus all`参数确保所有可用GPU资源被分配给该容器使用;持久化存储路径则根据实际情况调整为合适的目录位置。 #### 测试部署效果 完成以上步骤之后,可以通过浏览器或其他HTTP客户端向http://localhost:8080发送请求来进行简单的调用测试,验证模型是否正常工作。如果一切顺利的话,应该能接收到由Qwen 2.5处理后的响应数据[^1]。 #### 日志查看与错误排查 若遇到任何问题无法顺利完成部署流程,则应当及时查阅相关日志记录帮助定位具体原因所在。通常情况下,可以利用如下指令获取当前正在运行的容器的日志输出: ```bash docker logs qwen-service ``` 这有助于快速发现潜在的技术难题并采取相应措施加以解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值