**《多模态大模型:算法应用与微调》****是由资深的大型语言模型(LLM)研究与实践专家刘兆峰精心撰写的一部专业力作。**该书深度剖析了多模态大模型的核心知识体系,从基础的算法原理到实际的应用实战,内容既广泛又深入。
作者巧妙地将理论与实践相结合,使得这本书既适合大模型领域的专业研究者,也适合那些在应用层面操作大模型的技术人员,甚至对人工智能领域充满好奇心的技术爱好者也能从中受益匪浅。
一、本书推荐理由
**《多模态大模型:算法应用与微调》**该书以权威的内容、丰富的案例和理论与实践结合的方式,全面深入地解析了多模态大模型的算法原理、实战应用及微调技术,为读者提供了宝贵的知识财富和职业发展助力。
-
内容权威:该书受到多位研究专家、科技公司管理者的好评及推荐,全面覆盖了多模态大模型的算法原理和应用实战,从基础到高级,内容详尽且权威。
-
案例丰富:书中包含丰富的项目案例,通过具体实战项目展示了大模型的实际部署和优化过程,并强调了微调技术的细节,确保读者能够在实际操作中有效应用所学知识。
-
理论与实践结合:该书不仅深入理解了多模态大模型架构与训练机制,从理论上系统掌握前沿技术,还通过案例实践提升AI技术水平,为职业发展注入核心竞争力。
二、本书主要内容
******《多模态大模型:算法应用与微调》******该书内容全面且深入地介绍了Transformer模型、GPT系列模型、深度生成模型、预训练模型等算法原理,以及文本生成、图像生成等应用实战,为读者提供了丰富的知识和实践指导。
******限时五折优惠,**快快抢购吧!
第一篇 算法原理
第1章 Transformer模型
-
Seq2Seq结构:介绍了分词器、编码器-解码器结构、注意力机制等。
-
Transformer模型介绍:详细阐述了位置编码、模型架构、标准化和残差连接、线性层和softmax层、损失函数等关键组件。
-
ViT模型介绍:探讨了注意力机制在图像上的应用、ViT模型架构、大数据预训练等。
第2章 GPT系列模型
-
GPT-1至GPT-4:依次介绍了各代模型的语言模型、训练框架、模型效果分析、上下文学习、构造训练数据集、训练停止判定、重要潜力等,特别强调了GPT-3.5中的代码生成模型Codex、强化学习以及ChatGPT的“孪生兄弟”InstructGPT等。
-
语言模型的未来:展望了自我学习与自我核实、稀疏专家模型等发展趋势。
-
GPT系列的其他应用:介绍了MiniGPT-4、minGPT与nanoGPT、AutoGPT与AgentGPT等衍生模型。
第3章 深度生成模型
-
从自编码器到变分自编码器:对比了自编码器和变分自编码器的异同。
-
生成对抗网络:阐述了网络架构、算法描述,并通过手写数字图像生成的实战案例展示了其应用。
-
文本与图像的桥梁CLIP:介绍了CLIP的训练与推理过程,并通过图像文本匹配的实战案例展示了其应用。
-
稳定扩散模型Stable Diffusion:详细解析了Stable Diffusion的基本组件、扩散原理、数据集构建等,并通过图像生成的实战案例展示了其应用。
第4章 预训练模型
-
大模型的涌现能力:探讨了缩放法则和涌现能力对模型性能的影响。
-
模型参数量估算与通信数据量分析:提供了模型参数量估算的方法和通信数据量的分析。
-
分布式训练:深入讲解了数据并行、模型并行、混合并行以及混合精度训练等分布式训练技术。
-
DeepSpeed:介绍了DeepSpeed框架及其关键组件ZeRO、ZeRO-Offload和ZeRO-Infinity。
-
模型即服务平台:探讨了ModelScope和Hugging Face等模型即服务平台的应用。
第二篇 应用实战
第5章 文本生成应用实战
-
大模型的落地应用:介绍了外部增强、提示词工程和模型微调等关键步骤。
-
GLM系列模型:详细阐述了GLM与GLM-130B、ChatGLM、ChatGLM-6B和ChatGLM2-6B等模型的特点和应用。
-
参数高效微调:探讨了Adapter Tuning、Prompt Tuning、Prefix-Tuning、P-Tuning和P-Tuning v2等参数高效微调技术。
-
大语言模型应用框架LangChain:介绍了LangChain框架的基本概念和使用方法。
第6章 文本生成算法实战:DeepSpeed-Chat
-
ZeRO++:详细讲解了权重量化、分层切片、梯度量化等技术,并探讨了其与DeepSpeed-Chat的结合应用。
-
DeepSpeed-Chat快速开始:提供了DeepSpeed-Chat的快速上手指南。
-
DeepSpeed-Chat的RLHF训练:深入讲解了数据收集与整理、有监督微调、奖励模型微调和RLHF微调等关键步骤。
-
DeepSpeed混合引擎:介绍了DeepSpeed混合引擎的特点和应用。
第7章 图像生成算法实战:Stable Diffusion微调
-
LoRA参数高效微调技术:探讨了奇异值分解和LoRA详解等关键技术。
-
用于Diffusers的LoRA微调:提供了数据收集、训练参数配置、模型训练与测试等详细步骤。
-
Stable Diffusion WebUI:介绍了Stable Diffusion WebUI的安装、模型介绍、参数介绍以及其他应用。
-
可控扩散模型:ControlNet:探讨了ControlNet的原理、安装插件及使用方法。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓