清华大学第五版DeepSeek与AI幻觉很多版本的都有广告,迎姐找到了原版免费分享给大家。文末5个版本pdf可以免费下载,没有任何限制。
清华大学一二三四版DeepSeek教程主要是提示词使用,可以有针对性收藏整理自己领域需要的,不需要全部都掌握的,第五版DeepSeek与AI幻觉主要是解决AI有时候胡编乱造的问题,手册中有解决方案的prompt,简单来说,就是通过约束限制大模型实现生成的内容更准确,专业。
清华大学一二三版,迎姐早期的文章有介绍:
[AI写作入门必备(职场实战版),清华大学deepseek手册1 2 3版本全套pdf免费下载,不用到处找了(建议收藏)]
第四版【清华大学】DeepSeek+DeepResearch:让科研像聊天一样简单.pdf
DeepSeek R1:职场人的高效科研与数据分析利器
核心优势:
低成本高精度:DeepSeek R1专注推理任务,性能对标OpenAI顶级模型,但训练成本仅为行业1/10.API调用成本低至竞品的3%,性价比极高。
多任务处理:支持数据爬取(筛选网址、生成Python脚本)、文件解析(Excel/TXT自动整理)、长文本分析(7000+ Token),逻辑严谨,结果可直接用于报告。
学术辅助神器:一键生成文献综述、中英互译、润色降重,格式规范(参考文献自动修正),解决论文、市场分析报告的“语言关”和“格式关”。
实操亮点:
数据整合:用Kimi处理长文本,Claude清洗数据,OpenAI生成图表,DeepSeek做最终分析,多工具协同效率翻倍。
避坑指南:爬虫任务选DeepSeek或OpenAI(响应快),复杂数据分析用DeepSeek(异常检测准),可视化直接调用OpenAI的DALL·E。
职场刚需:5分钟生成带图表的数据报告、自动整理会议纪要、快速提取行业研报核心结论,省时50%以上。
一句话总结:用DeepSeek R1+多工具组合,低成本实现“数据采集→分析→可视化→报告”全流程自动化,让职场人专注决策而非重复劳动。
第五版【清华大学】DeepSeek与AI幻觉.pdf
【职场人必备:AI幻觉应对指南】
一、核心认知
AI幻觉即人工智能的"合理编造",表现为事实错误或逻辑断裂(如医疗转录将"父亲去世"错写成"65岁去世")。
DeepSeek职场使用需警惕两类风险
决策误导:金融预测错误导致投资损失(某银行通过因果网络将不良率降低4.2%)
合规风险:自动生成内容存在法律/伦理隐患
二、怎么解决AI幻觉
1、解决AI胡编乱造的整体思路
联网核验:开启模型联网功能(幻觉率下降2-5%),就是开启联网模式,这个是参考了搜索引擎的等网络数据。
跨模型比对:用不同AI交叉验证答案,不只是deepseek多个比如kimi,豆包等AI使用,看有没有互相矛盾的地方.
约束限制模型:限定时间/数据源(例:“基于2023年财报数据…”),2021-2025知网的参考文献并且标注引用来源等。
2、解决AI幻觉deepseek提示词prompt(其他AI也是一样的,指令是通用的)
添加验证指令:“请分三步验证该结论”
强制声明不确定性:“若不确定请标注[推测]”
设定专业角色:“作为注册会计师回答…”
清华大学第一二三四五版DeepSeek教程,别到处找了,直接免费下载
(不用回复什么,没有广告,直接下载就可以了)
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓