温馨提示:内容仅供技术交流,不构成任何投资建议或股票推荐
在上一个视频中,AFAN尝试使用DeepSeek对医学图像进行解析:包教包会!5分钟快速对接DeepSeek,完全免费!我惊喜的发现它不仅能够读取图中的文字,还能识别其中的曲线并分析其趋势走向。这让我产生了一个大胆的想法:能否让DeepSeek直接读取K线形态,帮助预测股票未来上涨或下跌的概率?
今天这个案例对应的代码,都可以通过github这个工程:https://github.com/AFAN-LIFE/AFAN-LIFE。
形态学预测研究已久
用K线形态来预测股价这个想法并非空穴来风。在股票投资中,以量价形态为代表的技术分析路线受到很多人的追捧。例如,华创证券的金融工程研究组专门建立了一个形态学网站,介绍各种K线形态,并基于这些形态对股票未来涨跌概率进行统计。
网站地址:mark.hcquant.com
更早的博客时代,新浪博客中的“缠中说禅”大神因其对形态学的分析判断而备受追捧,甚至有人将其博客整理成一个流派,称为“缠论”。在GitHub上,金融数据提供商Tushare就维护了一个数千个Star的仓库。
仓库地址:https://github.com/waditu/czsc
随着近几年人工智能的兴起,有人尝试利用卷积神经网络等图像识别算法对K线形态进行分析预测,但这些方法无法实现对图像语义的理解。
在量化交易中应用卷积神经网络CNN做时间序列预测
借助DeepSeek的“看图说话”能力,AFAN认为可以尝试让大模型读取K线形态,帮助分析并指导投资。
DeepSeek形态学预测实践
在代码实现中,首先需要导入相关库,如获取数据的Tushare和绘制K线图的mplfinance。Tushare是一个著名的金融数据开放平台,用户可以通过其接口获取分钟数据。未注册的用户需要先注册并填写TOKEN,然后调用接口获取所需数据。
tushare地址:https://www.tushare.pro/
import matplotlib
import numpy as np
import pandas as pd
import tushare as ts
import mplfinance as mpf
import matplotlib.pyplot as plt
我以1分钟频率获取了浦发银行某一天的股票数据,并将其保存到本地。接着,使用mplfinance库绘制K线图,但在此之前需要对数据进行调整,例如将时间列设置为DataFrame的索引,并将成交量列重命名为符合库要求的格式。
#获取浦发银行60000.SH的历史分钟数据
df = pro.stk_mins(ts_code='600000.SH', freq='1min', start_date='2025-03-21 09:00:00', end_date='2025-03-21 16:00:00')
# 蜡烛图展示
adj_df = df.set_index('trade_time')
adj_df.index = pd.DatetimeIndex(adj_df.index)
adj_df = adj_df.rename(columns={'vol': 'volume'})
# 设置mplfinance的蜡烛颜色,up为阳线颜色,down为阴线颜色
my_color = mpf.make_marketcolors(up='r',
down='g',
edge='inherit',
wick='inherit',
volume='inherit')
# 设置图表的背景色
my_style = mpf.make_mpf_style(marketcolors=my_color,
figcolor='(0.82, 0.83, 0.85)',
gridcolor='(0.82, 0.83, 0.85)')
mpf.plot(adj_df, style=my_style, type='candle', volume=True, returnfig=True)
plt.savefig('test.png') # 保存为PNG文件
配置好蜡烛图的颜色和样式后,即可生成当天的K线图,并将其保存为test.png。
随后,AFAN利用DeepSeek-VL2视觉模型对K线图进行分析。我将图片转换为base64格式,并通过Prompt描述让模型扮演股票形态学专家,根据当天的成交量和价格情况预测次日上涨概率,并给出一个介于-1到1之间的值(-1表示大概率下跌,1表示大概率上涨,0表示涨跌不确定)。
返回结果显示,DeepSeek大体上理解了整个图片的形态!DeepSeek对这张图得出以下结论:首先,它识别出收盘价显著高于开盘价;其次,虽然整体成交量较低,但在价格上涨过程中成交量有所增加,这通常是一个积极信号;第三,它注意到当天有多个阳线,且阳线实体较长,表明买家力量较强;最后,模型建议结合其他技术指标进一步确认趋势的可靠性,并给出上涨概率为1的结论。
通过这一实验,AFAN发现DeepSeek能够准确描述图片的基本情况,但其预测结果的可信度仍需进一步测试。在后续视频中,我计划利用这种方法对单只股票进行日内行情回测,并对多只股票计算相关因子,以评估DeepSeek在形态学分析中的可靠性。感兴趣的朋友可以关注并分享这一系列内容。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓