前言
4月29日阿里巴巴发布了其最新的大规模语言模型——Qwen3。根据各平台测试结果显示,Qwen3在表现出色,全面吊打DeepSeek开源的R1模型以及OpenAI的o1模型等知名对手。总而言之,就是猛猛猛!!!看看下图的测试分数就知了:
既然Qwen3这么猛,我趁5.1假期在家中闲来无事,手上的Mac mini M4更是闲得发慌,尝试部署本地模型玩玩,给大家分享手把手的部署教程。
一、准备工作
1.下载和安装cherry studio
打开以下网址:https://www.cherry-ai.com/download,点击“下载(Apple芯片),完成后点击下载的文件完成安装。
2.下载和安装ollama
打开以下网址:https://ollama.com/download,点击"Download for macOS",完成后点击下载的文件,按提示完成安装。
二、下载和部署Qwen3大模型
Qwen3有0.6B到235B不同数量级别的参数模型。Mac mini M4丐版除了235B外,都可以运行。按需选择即可,本文以14B参数的模型为例。
打开MacOS的终端程序,输入命令:
ollama run qwen3:14b
如您想部署30B混合专家模型,,则输入:
ollama run qwen3:30b-a3b
输入完成后即会开始拉取QWen3大模型:
二、设置默认模型为Qwen3
打开Cherry Studio,按下图顺序点击设置-选择Ollama-点管理:
即可看到下载的各模型,点击右边+号添加,建议把已下载的都添加。
把按下图设置,把默认模型都设置为刚完成下载的Qwen3:14b模型。
四、开始使用Qwen3模型
然后点击左上角头像下的助手图标即可使用,如果你要变更使用的模型,点击程序左上方或聊天窗口内的@图标即可。
我分别下载了4b、8b、14b和30b混合专家模型,并对各模型的运行速度进行了简单的测试,以生成网页版小游戏(输入以下指令:生成一个网页版的猴子闯关游戏,沿路跳跃越过地面障碍物,并收集金币获得积分。)为例,除了30b-a3b运行速度太慢,我没有耐心等待,各模型均能生成游戏并能运行,但游戏的运行均有不同程度的逻辑问题,需要多次调整,各模型的表现如下:
模型 | 初次生成时间 | 游戏运行情况 |
4b | 约2分钟 | 可运行 |
8b | 约2分钟 | 可运行 |
14b | 约5分钟 | 可运行 |
30b-a3b | 预计超1小时 | 没有耐心等 |
五、小结:
mac mini m4版本运行Qwen3 14b及以下模型能获得流畅的体验,运行30b-a3b的参数对于mac mini丐版还是太吃力了,虽然能正常运行,但耗时过长,没有实用意义。日常建议使用14b即可。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】