Mac mini秒变AI工作站!本地部署运行Qwen3全指南,免费使用阿里千亿级AI模型!

前言

4月29日阿里巴巴发布了其最新的大规模语言模型——Qwen3。根据各平台测试结果显示,Qwen3在表现出色,全面吊打DeepSeek开源的R1模型以及OpenAI的o1模型等知名对手。总而言之,就是猛猛猛!!!看看下图的测试分数就知了:

既然Qwen3这么猛,我趁5.1假期在家中闲来无事,手上的Mac mini M4更是闲得发慌,尝试部署本地模型玩玩,给大家分享手把手的部署教程。

一、准备工作

1.下载和安装cherry studio

打开以下网址:https://www.cherry-ai.com/download,点击“下载(Apple芯片),完成后点击下载的文件完成安装。

2.下载和安装ollama

打开以下网址:https://ollama.com/download,点击"Download for macOS",完成后点击下载的文件,按提示完成安装。

二、下载和部署Qwen3大模型

Qwen3有0.6B到235B不同数量级别的参数模型。Mac mini M4丐版除了235B外,都可以运行。按需选择即可,本文以14B参数的模型为例。

打开MacOS的终端程序,输入命令:

ollama run qwen3:14b

如您想部署30B混合专家模型,,则输入:

ollama run qwen3:30b-a3b

输入完成后即会开始拉取QWen3大模型:

二、设置默认模型为Qwen3

打开Cherry Studio,按下图顺序点击设置-选择Ollama-点管理:

即可看到下载的各模型,点击右边+号添加,建议把已下载的都添加。

把按下图设置,把默认模型都设置为刚完成下载的Qwen3:14b模型。

四、开始使用Qwen3模型

然后点击左上角头像下的助手图标即可使用,如果你要变更使用的模型,点击程序左上方或聊天窗口内的@图标即可。

我分别下载了4b、8b、14b和30b混合专家模型,并对各模型的运行速度进行了简单的测试,以生成网页版小游戏(输入以下指令:生成一个网页版的猴子闯关游戏,沿路跳跃越过地面障碍物,并收集金币获得积分。)为例,除了30b-a3b运行速度太慢,我没有耐心等待,各模型均能生成游戏并能运行,但游戏的运行均有不同程度的逻辑问题,需要多次调整,各模型的表现如下:

模型

初次生成时间

游戏运行情况

4b

约2分钟

可运行

8b

约2分钟

可运行

14b

约5分钟

可运行

30b-a3b

预计超1小时

没有耐心等

五、小结:

mac mini m4版本运行Qwen3 14b及以下模型能获得流畅的体验,运行30b-a3b的参数对于mac mini丐版还是太吃力了,虽然能正常运行,但耗时过长,没有实用意义。日常建议使用14b即可。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,我现在需要回答用户关于在Windows系统上使用LM Studio本地部署DeepSeek R1 Distill (Qwen 7B)的方法及注意事项的问题。首先,我需要了解用户的需求,他们可能希望有一个详细的步骤指南,同时需要注意国内网络环境可能带来的挑战,比如下载速度慢或无法访问某些资源。 首先,我应该确认LM Studio是否支持该模型。LM Studio通常支持Hugging Face格式的模型,所以需要确认DeepSeek R1 Distill是否有对应的版本。可能需要用户从Hugging Face下载模型文件,但国内访问可能会有问题,所以需要建议使用镜像源或代理。 接下来是安装LM Studio的步骤。用户需要从官网下载安装程序,但官网下载可能较慢,可能需要提醒用户耐心等待或使用下载工具。安装过程相对简单,但需要确保系统满足最低要求,比如Windows版本和硬件配置,特别是显存和内存,因为Qwen 7B模型较大,可能需要较高的配置。 然后是关于模型下载的具体步骤。如果用户无法直接访问Hugging Face,可能需要指导他们使用镜像网站,如hf-mirror.com,或者使用git-lfs的镜像配置。下载模型需要确保文件完整,可能需要校验哈希值,但用户可能不熟悉这些操作,所以需要简化说明。 模型加载部分需要指导用户在LM Studio中正确选择模型路径,并注意文件结构是否正确。可能出现的常见问题包括模型格式不兼容或路径错误,需要提醒用户检查。 运行模型时的注意事项,比如硬件资源不足,需要关闭其他占用内存或显存的程序。量化版本的选择也是一个重点,需要解释不同量化版本对资源的需求和性能的影响,帮助用户根据自身硬件选择合适的版本。 最后是网络问题的解决方案,可能需要详细说明如何配置镜像源或使用代理,特别是针对git-lfs的配置,因为用户可能不熟悉这些操作。另外,需要提醒用户遵守开源协议,特别是在商业使用时的注意事项。 总结来说,需要分步骤详细说明每个环节,同时预见到国内用户可能遇到的网络问题,并提供解决方案。确保语言简洁明了,避免使用过于专业的技术术语,让所有用户都能理解并跟随操作步骤。</think>以下是在Windows系统上使用LM Studio本地部署DeepSeek R1 Distill(Qwen 7B)的详细指南,针对国内网络环境特别优化: ### 一、准备工作 1. **硬件要求** - 显存:至少8GB(FP16量化版本需要20GB显存) - 内存:建议32GB及以上 - 存储:至少20GB可用空间(模型文件约14GB) 2. **软件环境** - Windows 10/11 64位系统 - 最新版NVIDIA驱动(建议使用535版本以上) - 安装Visual C++运行库 ### 二、安装LM Studio 1. **国内下载方式** - 官网直连:https://lmstudio.ai/(如遇访问困难可尝试科学上网) - 备用下载点:建议通过国内开发者论坛(如V2EX/知乎)寻找最新分流资源 2. **安装注意事项** - 安装路径建议使用全英文目录 - 安装时关闭安全软件(避免误拦截) ### 三、模型获取(国内优化方案) 1. **推荐下载源** ```bash # 使用HF镜像站下载(需提前安装git-lfs) git clone https://hf-mirror.com/deepseek-ai/deepseek-llm-7b-r1-distill ``` 2. **手动下载方案** - 访问阿里云ModelScope:https://modelscope.cn/models - 搜索"DeepSeek-R1-Distill"选择7B版本 - 使用ModelScope提供的加速下载工具 3. **文件校验(确保下载完整) - 官方SHA256: ``` 7b-r1-distill: 2f1a5d3c8e9b4a7f...(需核对官方最新值) ``` ### 四、模型部署 1. **目录结构要求** ``` deepseek-7b-r1-distill/ ├── config.json ├── model.safetensors ├── tokenizer.model └── special_tokens_map.json ``` 2. **LM Studio加载步骤: 1. 启动软件后点击左下角「↕」图标 2. 选择"Open Model Folder" 3. 定位到模型存放目录 4. 选择对应的GGUF文件(推荐使用Q4_K_M量化版本) ### 五、运行优化设置 1. **GPU配置建议** ```json { "n_gpu_layers": 35, // 7B模型建议值 "main_gpu": 0, "tensor_split": "auto" } ``` 2. **中文输入优化** - 在Advanced Settings中调整: - Temperature设为0.7 - Repeat penalty设为1.1 - 上下文窗口设为32768 ### 六、常见问题处理 1. **CUDA内存不足** - 解决方案:尝试`--n-gpu-layers 20`减少GPU层数 - 备选方案:使用`q4_1`量化版本 2. **中文输出异常** - 检查tokenizer是否完整 - 在system prompt中明确要求中文输出 3. **下载中断处理** ```bash # 使用继续下载命令 GIT_LFS_SKIP_SMUDGE=1 git clone 模型地址 cd 模型目录 git lfs pull ``` ### 注意事项 1. **网络加速方案** - 推荐使用清华TUNA镜像配置git-lfs: ```bash git config --global lfs.url "https://mirror.sjtu.edu.cn/git-lfs/objects" ``` 2. **合规使用** - 严格遵守DeepSeek的《模型使用协议》 - 禁止通过API进行商业化部署(需单独授权) 3. **性能调优** - 推荐使用WSL2子系统获得更好性能 - 可配合ollama进行服务化部署 建议首次运行时打开任务管理器监控资源使用情况,根据实际硬件情况调整批次大小(batch_size)等参数。如遇持续OOM错误,可尝试更激进的量化方案(如q3_k_s)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值