《深入浅出OCR》项目实战:文字检测

《深入浅出OCR》项目实战:文字检测

💻本篇导读:在上一章【《深入浅出OCR》第三章:OCR文字检测】,本人着重介绍文字检测算法的发展、分类及各自领域经典算法,为了进一步熟悉文字检测流程,本次作者将以基于DBNet的文字检测实战为例,全面对文字检测技术流程进行解读,方便学习者快速上手实战。

一、项目简介:

本次实战项目以开源的百度飞桨PaddleOCR为框架,采用主流的检测DBNet算法进行文字检测实战,结合数据增强及模型微调,采用MobileNetV3模型作为骨干网络,进行训练及预测,并且可自己更改其他网络。本人将本次实战流程大致分为环境安装、检测模型与构建、训练与预测及模型导出等部分。

二、数据集介绍:

本次项目数据集以icdar15为例,数据集样例如下。本文参照其标注格式进行检测模型的训练、评估与测试。

image.png

注:官方数据~/icdar2015/text_localization 有两个文件夹和两个文件,分别是:

bash复制代码~/icdar2015/text_localization 
  └─ icdar__train_imgs/         icdar数据集的训练数据
  └─ test_images/             icdar数据集的测试数据
  └─ train_icdar2015_label.txt    icdar数据集的训练标注
  └─ test_icdar2015_label.txt     icdar数据集的测试标注

官方提供的标注文件格式为:

lua复制代码" 图像文件名                    json.dumps编码的图像标注信息"
test_images/img_10.jpg    [{"transcription": "data", "points": [[210, 101], [316, 142], [418, 216], [313, 178]], ...}]

json.dumps编码前的图像标注信息是包含多个字典的list,字典中的������points表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。 �������������transcription表示当前文本框的文字,在文本检测任务中并不需要这个信息。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

# 三、框架介绍与环境安装

3.1 PaddleOCR框架

PaddleOCR框架: 链接

PaddleOCR是一款超轻量、中英文识别模型,目标是打造丰富、领先、实用的文本识别模型,支持服务器及各类终端上进行部署,支持中英文识别;支持多角度方向文字识别,同时可运行于Linux、Windows、MacOS等多种系统。

186170862-b8f80f6c-fee7-4b26-badc-de9c327c76ce.png

3.2 项目环境克隆

本次项目环境需要先克隆PaddleOCR项目,具体命令:

!cd ~/work && git clone -b develop <https://gitee.com/paddlepaddle/PaddleOCR.git>

3.3 安装PaddleOCR环境

其次,需要安装PaddleOCR项目提供环境文件requirements.txt,具体命令:

arduino

复制代码!pip install -r ./requirements.txt && python setup.py install

3.4 解压数据集

解压训练集与测试集

bash复制代码!cd ~/data/data62842/ && unzip train\_images.zip
!cd ~/data/data62843/ && unzip test\_images.zip

四、DBNet检测模型介绍

论文连接:arxiv.org/pdf/1911.08…

项目链接:github.com/WenmuZhou/D…

DB(DifferenttiableBinarization)可微二值化是一个基于分割的文本检测算法,DBnet提出可微分阈值Differenttiable Binarization module采用动态的阈值区分文本区域与背景,DB算法算法结构简单,无需繁琐的后处理,可同时检测水平、弯曲和多方向文字,且在检测性能和速度上取得不错效果。

DB算法整体结构如下图所示:

image.png

  1. 第一模块:使用卷积神经网络网络进行提取特征,获取特征图,在本项目使用的轻量化网络MobileNetv3,同时使用FPN结构,获取多尺度的特征,在本实验中,我们提取4个不同尺度下的特征图做拼接。
  2. 第二模块:使用一个卷积层和两个转置卷积层的结构获取预测的概率图和阈值图;
  3. 第三模块:使用DB方法获取近似二值图。

接下来本人将重点说下后处理部分:

基于分割的文本检测算法在得到分割结果通常采用一个固定的阈值得到二值化的分割图,然后采用像素聚类的启发式算法得到文本区域,其流程如图中的蓝色箭头所示。

DB算法最大的不同在于存在额外的阈值图,通过网络去预测图片每个位置处的阈值,而不是采用固定值,可以更好分离文本背景与前景,其流程如图中红色箭头所示。

image.png

在传统的分割算法中,获取概率图后,会使用标准二值化(Standard Binarize)方法进行处理,将低于阈值的像素点置0,高于阈值的像素点置1,公式如下:

image.png

而标准的二值化方法是不可微的,导致网络无法端对端训练。为了解决该问题,DB算法提出可微二值化(Differentiable Binarization,DB)。可微二值化将标准二值化中的阶跃函数进行了近似,使用如下公式进行代替:

image.png

从上述公式可以发现,增强因子会放大错误预测的梯度,从而优化模型得到更好的结果。

image.png

损失函数方面: 由于训练阶段获取3个预测图,因此也需要结合这3个预测图与它们对应的真实标签分别构建3部分损失函数。总的损失函数的公式定义如下:

image.png

4.1 DBnet模型解读

本项目模型采用文字识别经典CRNN模型(CNN+RNN+CTC),其中部分模型代码经过PaddleOCR源码改编,完成识别模型的搭建、训练、评估和预测过程。训练时可以手动更改config配置文件(数据训练、加载、评估验证等参数),默认采用优化器采用Adam,使用CTC损失函数。本项目采用ResNet34作为骨干网络。

根据上述模型解读,DBNet主要分为以下三部分

  1. Backbone网络,负责提取图像的特征
  2. FPN网络,特征金字塔结构增强特征
  3. Head网络,计算文本区域概率图

总体来说,输入的图像经过网络Backbone和FPN提取特征,提取后的特征级联在一起,得到原图四分之一大小的特征,然后利用卷积层分别得到文本区域预测概率图和阈值图,进而通过DB的后处理得到文本包围曲线。

因此,需要从以上三个方面来依次构建DBNet文本检测网络模型。 在上述环境安装后,本项目使用PaddleOCR分别实现上述三个网络模块,并完成完整的网络构建。

4.2 Backbone选择与构建

本次实战我们采用MobileNetV3 large网络结构作为backbone进行特征提取。

python复制代码 from ppocr.modeling.backbones.det_mobilenet_v3 import MobileNetV3
 import paddle
 
 fake_inputs = paddle.randn([1, 3, 640, 640], dtype="float32")
 
 # 1. 声明Backbone
 model_backbone = MobileNetV3()
 model_backbone.eval()
 
 # 2. 执行预测
 outs = model_backbone(fake_inputs)
 
 # 3. 打印网络结构
 print(model_backbone)
 #data_format=NCHM  NCHM分别代表的含义:[batch, in_channels, in_height, in_width]
 
 
 # 4. 打印输出特征形状
 for idx, out in enumerate(outs):
     print("The index is ", idx, "and the shape of output is ", out.shape)
 
 123456789101112131415161718192021
 #mobilenetv3:
 
 class MobileNetV3(nn.Layer):
     def __init__(self,
                  in_channels=3,
                  model_name='large',
                  scale=0.5,
                  disable_se=False,
                  **kwargs):
         """
         the MobilenetV3 backbone network for detection module.
         Args:
             params(dict): the super parameters for build network
         """
         super(MobileNetV3, self).__init__()
 
         self.disable_se = disable_se
 
         if model_name == "large":
             cfg = [
                 # k, exp, c,  se,     nl,  s,
                 [3, 16, 16, False, 'relu', 1],
                 [3, 64, 24, False, 'relu', 2],
                 [3, 72, 24, False, 'relu', 1],
                 [5, 72, 40, True, 'relu', 2],
                 [5, 120, 40, True, 'relu', 1],
                 [5, 120, 40, True, 'relu', 1],
                 [3, 240, 80, False, 'hardswish', 2],
                 [3, 200, 80, False, 'hardswish', 1],
                 [3, 184, 80, False, 'hardswish', 1],
                 [3, 184, 80, False, 'hardswish', 1],
                 [3, 480, 112, True, 'hardswish', 1],
                 [3, 672, 112, True, 'hardswish', 1],
                 [5, 672, 160, True, 'hardswish', 2],
                 [5, 960, 160, True, 'hardswish', 1],
                 [5, 960, 160, True, 'hardswish', 1],
             ]
             cls_ch_squeeze = 960
         elif model_name == "small":
             cfg = [
                 # k, exp, c,  se,     nl,  s,
                 [3, 16, 16, True, 'relu', 2],
                 [3, 72, 24, False, 'relu', 2],
                 [3, 88, 24, False, 'relu', 1],
                 [5, 96, 40, True, 'hardswish', 2],
                 [5, 240, 40, True, 'hardswish', 1],
                 [5, 240, 40, True, 'hardswish', 1],
                 [5, 120, 48, True, 'hardswish', 1],
                 [5, 144, 48, True, 'hardswish', 1],
                 [5, 288, 96, True, 'hardswish', 2],
                 [5, 576, 96, True, 'hardswish', 1],
                 [5, 576, 96, True, 'hardswish', 1],
             ]
             cls_ch_squeeze = 576
         else:
             raise NotImplementedError("mode[" + model_name +
                                       "_model] is not implemented!")
 
         supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
         assert scale in supported_scale, \
             "supported scale are {} but input scale is {}".format(supported_scale, scale)
         inplanes = 16
         # conv1
         self.conv = ConvBNLayer(
             in_channels=in_channels,
             out_channels=make_divisible(inplanes * scale),
             kernel_size=3,
             stride=2,
             padding=1,
             groups=1,
             if_act=True,
             act='hardswish')
 
         self.stages = []
         self.out_channels = []
         block_list = []
         i = 0
         inplanes = make_divisible(inplanes * scale)
         for (k, exp, c, se, nl, s) in cfg:
             se = se and not self.disable_se
             start_idx = 2 if model_name == 'large' else 0
             if s == 2 and i > start_idx:
                 self.out_channels.append(inplanes)
                 self.stages.append(nn.Sequential(*block_list))
                 block_list = []
             block_list.append(
                 ResidualUnit(
                     in_channels=inplanes,
                     mid_channels=make_divisible(scale * exp),
                     out_channels=make_divisible(scale * c),
                     kernel_size=k,
                     stride=s,
                     use_se=se,
                     act=nl))
             inplanes = make_divisible(scale * c)
             i += 1
         block_list.append(
             ConvBNLayer(
                 in_channels=inplanes,
                 out_channels=make_divisible(scale * cls_ch_squeeze),
                 kernel_size=1,
                 stride=1,
                 padding=0,
                 groups=1,
                 if_act=True,
                 act='hardswish'))
         self.stages.append(nn.Sequential(*block_list))
         self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
         for i, stage in enumerate(self.stages):
             self.add_sublayer(sublayer=stage, name="stage{}".format(i))
 
     def forward(self, x):
         x = self.conv(x)
         out_list = []
         for stage in self.stages:
             x = stage(x)
             out_list.append(x)
         return out_list

4.3 FPN网络特征金字塔

  • 负责图像特征增强
python复制代码 import paddle
 
 # 1. 从PaddleOCR中import DBFPN
 from ppocr.modeling.necks.db_fpn import DBFPN
 
 # 2. 获得Backbone网络输出结果
 fake_inputs = paddle.randn([1, 3, 640, 640], dtype="float32")
 model_backbone = MobileNetV3()
 in_channles = model_backbone.out_channels
 
 # 3. 声明FPN网络
 model_fpn = DBFPN(in_channels=in_channles, out_channels=256)
 
 # 4. 打印FPN网络
 print('FPN模型输出:',model_fpn)
 
 # 5. 计算得到FPN结果输出
 outs = model_backbone(fake_inputs)
 fpn_outs = model_fpn(outs)
 
 # 6. 打印FPN输出特征形状
 print(f"The shape of fpn outs {fpn_outs.shape}")
 #Conv2d(in_channels=3,out_channels=64,kernel_size=4,stride=2,padding=1,data_format=NCHM),输入通道数,输出通道数,卷积核大小,数据格式为NCHM batch channels in_hight in_width

4.4 Head网络

python复制代码from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


def get_bias_attr(k):
    stdv = 1.0 / math.sqrt(k * 1.0)
    initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
    bias_attr = ParamAttr(initializer=initializer)
    return bias_attr


class Head(nn.Layer):
    def __init__(self, in_channels, name_list, kernel_list=[3, 2, 2], **kwargs):
        super(Head, self).__init__()

        self.conv1 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels // 4,
            kernel_size=kernel_list[0],
            padding=int(kernel_list[0] // 2),
            weight_attr=ParamAttr(),
            bias_attr=False)
        self.conv_bn1 = nn.BatchNorm(
            num_channels=in_channels // 4,
            param_attr=ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=1.0)),
            bias_attr=ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
            act='relu')
        self.conv2 = nn.Conv2DTranspose(
            in_channels=in_channels // 4,
            out_channels=in_channels // 4,
            kernel_size=kernel_list[1],
            stride=2,
            weight_attr=ParamAttr(
                initializer=paddle.nn.initializer.KaimingUniform()),
            bias_attr=get_bias_attr(in_channels // 4))
        self.conv_bn2 = nn.BatchNorm(
            num_channels=in_channels // 4,
            param_attr=ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=1.0)),
            bias_attr=ParamAttr(
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
            act="relu")
        self.conv3 = nn.Conv2DTranspose(
            in_channels=in_channels // 4,
            out_channels=1,
            kernel_size=kernel_list[2],
            stride=2,
            weight_attr=ParamAttr(
                initializer=paddle.nn.initializer.KaimingUniform()),
            bias_attr=get_bias_attr(in_channels // 4), )

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv_bn1(x)
        x = self.conv2(x)
        x = self.conv_bn2(x)
        x = self.conv3(x)
        x = F.sigmoid(x)
        return x

class DBHead(nn.Layer):
    """
    Differentiable Binarization (DB) for text detection:
        see https://arxiv.org/abs/1911.08947
    args:
        params(dict): super parameters for build DB network
    """

    def __init__(self, in_channels, k=50, **kwargs):
        super(DBHead, self).__init__()
        self.k = k
        binarize_name_list = [
            'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48',
            'conv2d_transpose_1', 'binarize'
        ]
        thresh_name_list = [
            'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50',
            'conv2d_transpose_3', 'thresh'
        ]
        self.binarize = Head(in_channels, binarize_name_list, **kwargs)
        self.thresh = Head(in_channels, thresh_name_list, **kwargs)

    def step_function(self, x, y):
        return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))

    def forward(self, x, targets=None):
        shrink_maps = self.binarize(x)
        if not self.training:
            return {'maps': shrink_maps}

        threshold_maps = self.thresh(x)
        binary_maps = self.step_function(shrink_maps, threshold_maps)
        y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
        return {'maps': y}

PaddleOCR通过将训练参数统一为配置文件进行训练,具体位置在PaddleOCR/configs/det中,添加训练配置文件det_ch_train.yml

4.5 参数解读:

ParameterDescriptionDefault value
use_gpu是否启用GPUTRUE
gpu_memGPU memory size used for initialization8000M
image_dirThe images path or folder path for predicting when used by the command line
det_algorithm选择的检测算法类型DB
det_model_dir文本检测推理模型文件夹。 参数传递有两种方式:None:自动将内置模型下载到 /root/.paddleocr/det ; 自己转换的推理模型的路径,模型和params文件必须包含在模型路径中None
det_max_side_len图像长边的最大尺寸。 当长边超过这个值时,长边会调整到这个大小,短边会按比例缩放960
det_db_threshBinarization threshold value of DB output map0.3
det_db_box_threshThe threshold value of the DB output box. Boxes score lower than this value will be discarded0.5
det_db_unclip_ratioThe expanded ratio of DB output box2
det_east_score_threshBinarization threshold value of EAST output map0.8
det_east_cover_threshThe threshold value of the EAST output box. Boxes score lower than this value will be discarded0.1
det_east_nms_threshThe NMS threshold value of EAST model output box0.2
rec_algorithm选择的识别算法类型CRNN(卷积循环神经网络)
rec_model_dir文本识别推理模型文件夹。 参数传递有两种方式:None:自动将内置模型下载到 /root/.paddleocr/rec ; 自己转换的推理模型的路径,模型和params文件必须包含在模型路径中None
rec_image_shape图像形状识别算法“3,32,320”
rec_batch_numWhen performing recognition, the batchsize of forward images30
max_text_length识别算法可以识别的最大文本长度25
rec_char_dict_paththe alphabet path which needs to be modified to your own path when rec_model_Name use mode 2./ppocr/utils/ppocr_keys_v1.txt
use_space_char是否识别空格TRUE
drop_score按分数过滤输出(来自识别模型),低于此分数的将不返回0.5
use_angle_cls是否加载分类模型FALSE
cls_model_dir分类推理模型文件夹。 参数传递有两种方式:None:自动下载内置模型到 /root/.paddleocr/cls ; 自己转换的推理模型的路径,模型和params文件必须包含在模型路径中None
cls_image_shape图像形状分类算法“3,48,192”
label_listlabel list of classification algorithm[‘0’,‘180’]
cls_batch_numWhen performing classification, the batchsize of forward images30
enable_mkldnn是否启用 mkldnnFALSE
use_zero_copy_runWhether to forward by zero_copy_runFALSE
lang支持语言,目前只支持中文(ch)、English(en)、French(french)、German(german)、Korean(korean)、Japanese(japan)ch
detppocr.ocr 函数执行时启用检测TRUE
recppocr.ocr func exec 时启用识别TRUE
clsEnable classification when ppocr.ocr func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction)FALSE
show_logWhether to print logFALSE
typePerform ocr or table structuring, 取值在 [‘ocr’,‘structure’]ocr
ocr_versionOCR型号版本号,目前模型支持列表如下:PP-OCRv3支持中英文检测、识别、多语言识别、方向分类器模型;PP-OCRv2支持中文检测识别模型;PP-OCR支持中文检测、识别 和方向分类器、多语言识别模型PP-OCRv3

算法配置

依据前【《深度浅出OCR》第三章:文字检测】解释,我们学习到文字识别过程被划分为Transform,Backbone,Neck和Head四个阶段,解释及参数配置如下:

字段用途默认值备注
model_type网络类型rec目前支持rec,det,cls
algorithm模型名称CRNN支持列表见algorithm_overview
Transform设置变换方式-目前仅rec类型的算法支持, 具体见ppocr/modeling/transform
name变换方式类名TPS目前支持TPS
num_fiducialTPS控制点数20上下边各十个
loc_lr定位网络学习率0.1\
model_name定位网络大小small目前支持small,large
Backbone设置网络backbone类名-具体见ppocr/modeling/backbones
namebackbone类名ResNet目前支持MobileNetV3,ResNet
layersresnet层数34支持18,34,50,101,152,200
model_nameMobileNetV3 网络大小small支持small,large
Neck设置网络neck-具体见ppocr/modeling/necks
nameneck类名SequenceEncoder目前支持SequenceEncoder,DBFPN
encoder_typeSequenceEncoder编码器类型rnn支持reshape,fc,rnn
hidden_sizernn内部单元数48\
out_channelsDBFPN输出通道数256\
Head设置网络Head-具体见ppocr/modeling/heads
namehead类名CTCHead目前支持CTCHead,DBHead,ClsHead
fc_decayCTCHead正则化系数0.0004\
kDBHead二值化系数50\
class_dimClsHead输出分类数2\

Loss损失

字段用途默认值备注
name网络loss类名CTCLoss目前支持CTCLoss,DBLoss,ClsLoss
balance_lossDBLossloss中是否对正负样本数量进行均衡(使用OHEM)True\
ohem_ratioDBLossloss中的OHEM的负正样本比例3\
main_loss_typeDBLossloss中shrink_map所采用的的lossDiceLoss支持DiceLoss,BCELoss
alphaDBLossloss中shrink_map_loss的系数5\
betaDBLossloss中threshold_map_loss的系数10\

后处理PostProcess

字段用途默认值备注
name后处理类名CTCLabelDecode目前支持CTCLoss,AttnLabelDecode,DBPostProcess,ClsPostProcess
threshDBPostProcess中分割图进行二值化的阈值0.3\
box_threshDBPostProcess中对输出框进行过滤的阈值,低于此阈值的框不会输出0.7\
max_candidatesDBPostProcess中输出的最大文本框数量1000
unclip_ratioDBPostProcess中对文本框进行放大的比例2.0\

五、训练与预测

5.1 训练检测模型

第一,我们需要修改检测配置configs/det/det_mv3_db.yml文件中Train和Eval数据集的图片路径data_dir和标签路径label_file_list

其次,如果您安装的是paddle cpu版本,需要将det_mv3_db.yml配置文件中的use_gpu字段修改为false.

根据修改后的配置文件,输入以下命令就可以开始训练。

bash复制代码!pwd
!cd ~/work/PaddleOCR && python tools/train.py -c configs/rec/my_rec_ch_train.yml

5.2导出模型

通过export_model.py导出模型,设置配置文件及导出路径。

将训练好的模型转换成inference模型命令如下:

pyhton复制代码!python tools/export_model.py \
        -c configs/det/det_mv3_db.yml \
        -o Global.pretrained_model=./output/db_mv3/best_accuracy \
        Global.save_inference_dir=./inference/db_mv3/

5.3预测结果

修改模型路径,运行predict.py:

image.png

六、问题汇总

问:文本行较紧密的情况下如何准确检测?

答:使用DBNet的方法检测密集文本行时,最好收集一批数据进行训练,并在训练时可以将生成二值图像,调小shrink_ratio参数。另外,预测时可适当减小unclip_ratio参数,其参数值与检测框大小成正比。

问:特定文字检测(如车票检测姓名),检测指定区域文字还是检测全部区域再筛选更好?

两个角度来说明一般检测全部区域再筛选更好。

问:针对DB的预处理部分,图片的长和宽为什么要处理成32的倍数?

答:以resnet骨干网络为例,在图像输入网络后,需要经过一共5次2倍降采样,共32倍,因此其原因与下采样的倍数有关,本人建议输入的图像尺寸为32的倍数。

七、总结:

  1. 针对模型方法,后续可以更换Resnet等骨干网络,提升检测检测效果。
  2. 后续继续对数据进行增强操作或结合更多相关数据集,增加模型的泛化性;
  3. 针对不同场景检测效果,可以适当调整DBnet参数(box_thresh、unclip_ratio)和其余参数学习率、Batchsize等。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值