为何需要对非结构化文档进行解析
RAG(Retrieval-Augmented Generation)时,对非结构化文档进行解析是至关重要的步骤,因为有多种优势。 此图是整体的RAG流程,供参考,本文主要讲的是数据准备阶段。
-
提高检索准确性
结构化信息提取:非结构化文档解析可以将文档中的文本、表格、图像等信息提取并转换为结构化数据。这使得RAG系统能够更准确地定位和检索相关信息。例如,将PDF文档中的表格数据提取为结构化的表格格式,可以方便地进行查询和分析。
保留文档结构:解析过程中保留文档的结构信息,如标题、段落、列表等,有助于RAG系统更好地理解文档的层次结构,从而提高检索的精度。 -
增强生成质量
上下文理解:结构化的文档信息为语言模型提供了更丰富的上下文,有助于生成更准确和相关的答案。例如,文档树结构可以清晰地表示文档的层次关系,帮助语言模型更好地理解上下文。
减少幻觉现象:解析准确的文档内容可以减少生成答案时的“幻觉”现象,即生成与原始文档不一致或偏离主题的回答。 -
提升系统性能
提高召回率:准确的文档解析可以确保在检索阶段能够更全面地召回相关文档部分,提高系统的召回率。
优化排序:解析后的结构化数据可以更方便地进行相关性排序,确保返回的文档片段是最相关的。 -
支持复杂查询
多部分信息整合:对于需要综合多个部分信息的复杂查询,结构化的文档信息可以更好地识别和整合来自文档不同部分的信息,生成综合的答案。
处理密集非结构化文本:在处理复杂的非结构化文档,如财务报告、法律文件和学术论文时,解析工具如LlamaParse和spRAG可以显著提升处理复杂查询的准确性。
前置文档解析
在Hugging Face中,有多种模型和工具可以用于非结构化文档解析,以下是一些推荐的模型和工具:
1.Unstructured
Unstructured是一个功能强大的Python库,提供了一系列开源组件,用于摄取和预处理各种非结构化文档,如PDF、HTML、Word文档等。其核心目标是将非结构化数据转换为结构化数据,以便后续处理。
Unstructured 会依赖NLTK(自然语言处理工具包),这个可能需要自己手动下载,可以参考
https://zhuanlan.zhihu.com/p/599003991
2.PaperMage
PaperMage是一个专门用于解析PDF文档的工具,特别适用于学术论文。它通过以下步骤进行文档解析:
-
纯文本提取
使用PDFPlumber提取PDF中的文字部分,得到words集合,并基于words位置关系检测文本行(lines)。
-
视觉标注
将PDF按页光栅化成位图,通过目标检测技术识别位图中的元素,得到blocks,每个block包括边界框(bounding box,bbox)和标签(如图片、表格等)信息。目标检测模型使用的是efficientdet系列模型:layoutparser/efficientdet。
-
字符级标注
使用I-VILA系列模型(allenai/ivila-block-layoutlm-finetuned-s2vl-v2)进行字符级标注,将前两步的结果作为输入,预测出每个word的标签。
3.RAGFlow DeepDoc
RAGFlow DeepDoc是一个支持多种文本切片模板的组件,适用于不同的业务场景。它可以帮助将非结构化文档解析为结构化数据,提升信息检索和文本生成的准确性和效率。
4.unstructured-inference
unstructured-inference是一个专注于非结构化数据预处理的Python库,其核心功能包括文档布局解析和光学字符识别(OCR)。它支持多种检测模型,如Detectron2和YOLOX,并可通过API与unstructured包集成。
5.LangChain
LangChain提供了一系列文档加载器,可以用于加载和解析各种格式的非结构化文档,如Word、PDF、Email、图片、Markdown和PPT等。以下是一些常用的加载器:
- Word文档解析
from langchain.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
data = loader.load()
print(data)
-
PDF文档解析
-
基于unstructured库
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./example_data/layout-parser-paper.pdf", mode="elements")
docs = loader.load()
print(docs[:5])
- 使用PyPDF工具:
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("example_data/layout-parser-paper.pdf")
pages = loader.load_and_split()
- 在线读取工具:
from langchain.document_loaders import OnlinePDFLoader
loader = OnlinePDFLoader("https://arxiv.org/pdf/2302.03803.pdf")
data = loader.load()
print(data)
- 使用PDFMiner库:
from langchain.document_loaders import PDFMinerLoader
loader = PDFMinerLoader("example_data/layout-parser-paper.pdf")
data = loader.load()
- Email邮件解析
from langchain.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader('example_data/fake-email.eml')
data = loader.load()
- 图片内容解析
from langchain.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
data = loader.load()
-
Markdown内容解析
基于unstructured库
loader = document_loaders.UnstructuredFileLoader(filepath, mode="elements", autodetect_encoding=True)
docs = loader.load()
- PPT内容解析
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader("example_data/fake-power-point.pptx")
data = loader.load()
文档解析面临的难点
待后续单独开一篇文章写一下这方面的问题和挑战,敬请期待…
文档解析后的-向量化(Embedding)
Hugging Face提供了多种高质量的Embedding模型,能够将文本转换为向量表示,用于计算文本之间的语义相似度,从而实现精准的信息检索。这些模型可以与Elasticsearch等向量存储系统结合使用,构建高效的检索增强生成(RAG)系统。Hugging Face上对中文比较友好的Embedding模型:
注意:**如果下载过程遇到网络不通的问题,可以通过国内镜像****https://hf-mirror.com/**或者modelscope(https://www.modelscope.cn/models)下载
1.bert-base-chinese
-
特点
这是中文领域非常常用的预训练模型,适用于多种中文自然语言处理任务,如文本分类、情感分析、命名实体识别等。虽然它未专门针对NER等特定任务微调,但可通过进一步微调来适应具体任务。
-
模型地址
https://huggingface.co/bert-base-chinese
2.uer/roberta-base-finetuned-cluener2020
-
特点
该模型是针对CLUENER2020数据集微调的RoBERTa模型,能够支持识别中文中的人名、地名、时间等实体,适合用于中文命名实体识别任务。
-
模型地址
https://huggingface.co/uer/roberta-base-finetuned-cluener2020
3.hfl/chinese-bert-wwm-ext
-
特点
这是一个全词掩码预训练的中文BERT模型,适合迁移到命名实体识别等任务,其在中文任务上表现出色。
-
模型地址
https://huggingface.co/hfl/chinese-bert-wwm-ext
4.hfl/chinese-roberta-wwm-ext
-
特点
类似于
hfl/chinese-bert-wwm-ext
,也是全词掩码预训练的模型,性能稍高,可用于中文命名实体识别等任务。 -
模型地址
https://huggingface.co/hfl/chinese-roberta-wwm-ext
5.WENGSYX/Deberta-Chinese-Large
-
特点
基于微软开源的Deberta模型,在中文领域进行预训练,使用了WuDaoCorpora语料库,为中文任务提供了更多的预训练语言模型选择。
-
模型地址
https://huggingface.co/WENGSYX/Deberta-Chinese-Large
6.google-bert/bert-base-multilingual-cased
-
特点
这是一个多语言版本的BERT模型,支持104种语言,能够从上下文中识别语言并进行相应的推理,适用于多语言任务,包括中文。
-
模型地址
https://huggingface.co/google-bert/bert-base-multilingual-cased
7.FacebookAI/xlm-roberta-base
-
特点
XLM-RoBERTa模型支持100种语言,可用于多语言任务,包括中文的文本分类、情感分析等。
-
模型地址
https://huggingface.co/FacebookAI/xlm-roberta-base
这些模型在中文自然语言处理任务中表现出色,可以根据具体任务选择合适的模型进行使用或微调。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈